summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'dev-python/gnuplot-py/files/gnuplot-py-1.7-numpy.patch')
-rw-r--r--dev-python/gnuplot-py/files/gnuplot-py-1.7-numpy.patch489
1 files changed, 489 insertions, 0 deletions
diff --git a/dev-python/gnuplot-py/files/gnuplot-py-1.7-numpy.patch b/dev-python/gnuplot-py/files/gnuplot-py-1.7-numpy.patch
new file mode 100644
index 000000000000..fb25a043d1ff
--- /dev/null
+++ b/dev-python/gnuplot-py/files/gnuplot-py-1.7-numpy.patch
@@ -0,0 +1,489 @@
+diff -ur gnuplot-py-1.7/ANNOUNCE.txt gnuplot-py-1.7-numpy/ANNOUNCE.txt
+--- gnuplot-py-1.7/ANNOUNCE.txt 2003-10-17 18:03:10.000000000 +0300
++++ gnuplot-py-1.7-numpy/ANNOUNCE.txt 2007-11-20 22:17:29.000000000 +0200
+@@ -9,7 +9,7 @@
+
+ Prerequisites (see footnotes):
+ the Python interpreter [1]
+- the Python Numeric module [3]
++ the Python numpy module [3]
+ the gnuplot program [2]
+
+ or, to use it under Java (experimental):
+@@ -20,7 +20,7 @@
+
+ Some ways this package can be used:
+
+-1. Interactive data processing: Use Python's excellent Numeric package
++1. Interactive data processing: Use Python's excellent numpy package
+ to create and manipulate arrays of numbers, and use Gnuplot.py to
+ visualize the results.
+ 2. Web graphics: write CGI scripts in Python that use gnuplot to
+diff -ur gnuplot-py-1.7/demo.py gnuplot-py-1.7-numpy/demo.py
+--- gnuplot-py-1.7/demo.py 2003-10-17 17:28:10.000000000 +0300
++++ gnuplot-py-1.7-numpy/demo.py 2007-11-20 22:36:59.000000000 +0200
+@@ -16,7 +16,7 @@
+ __cvs_version__ = '$Revision: 1.1 $'
+
+
+-from Numeric import *
++from numpy import *
+
+ # If the package has been installed correctly, this should work:
+ import Gnuplot, Gnuplot.funcutils
+@@ -31,7 +31,7 @@
+ g = Gnuplot.Gnuplot(debug=1)
+ g.title('A simple example') # (optional)
+ g('set data style linespoints') # give gnuplot an arbitrary command
+- # Plot a list of (x, y) pairs (tuples or a Numeric array would
++ # Plot a list of (x, y) pairs (tuples or a numpy array would
+ # also be OK):
+ g.plot([[0,1.1], [1,5.8], [2,3.3], [3,4.2]])
+ raw_input('Please press return to continue...\n')
+@@ -39,7 +39,7 @@
+ g.reset()
+ # Plot one dataset from an array and one via a gnuplot function;
+ # also demonstrate the use of item-specific options:
+- x = arange(10, typecode=Float)
++ x = arange(10, dtype='float_')
+ y1 = x**2
+ # Notice how this plotitem is created here but used later? This
+ # is convenient if the same dataset has to be plotted multiple
+@@ -74,8 +74,8 @@
+ # Make a 2-d array containing a function of x and y. First create
+ # xm and ym which contain the x and y values in a matrix form that
+ # can be `broadcast' into a matrix of the appropriate shape:
+- xm = x[:,NewAxis]
+- ym = y[NewAxis,:]
++ xm = x[:,newaxis]
++ ym = y[newaxis,:]
+ m = (sin(xm) + 0.1*xm) - ym**2
+ g('set parametric')
+ g('set data style lines')
+diff -ur gnuplot-py-1.7/FAQ.txt gnuplot-py-1.7-numpy/FAQ.txt
+--- gnuplot-py-1.7/FAQ.txt 2003-10-17 17:28:10.000000000 +0300
++++ gnuplot-py-1.7-numpy/FAQ.txt 2007-11-20 22:17:50.000000000 +0200
+@@ -17,7 +17,7 @@
+ #! /usr/bin/python2
+
+ import Gnuplot, Gnuplot.funcutils
+-from Numeric import *
++from numpy import *
+
+ g = Gnuplot.Gnuplot()
+ g.plot([[0,1.1], [1,5.8], [2,3.3], [3,4.2]])
+diff -ur gnuplot-py-1.7/funcutils.py gnuplot-py-1.7-numpy/funcutils.py
+--- gnuplot-py-1.7/funcutils.py 2003-10-17 17:28:10.000000000 +0300
++++ gnuplot-py-1.7-numpy/funcutils.py 2007-11-20 22:25:24.000000000 +0200
+@@ -16,19 +16,19 @@
+
+ __cvs_version__ = '$Revision: 1.1 $'
+
+-import Numeric
++import numpy
+
+ import Gnuplot, utils
+
+
+-def tabulate_function(f, xvals, yvals=None, typecode=None, ufunc=0):
++def tabulate_function(f, xvals, yvals=None, dtype=None, ufunc=0):
+ """Evaluate and tabulate a function on a 1- or 2-D grid of points.
+
+ f should be a function taking one or two floating-point
+ parameters.
+
+ If f takes one parameter, then xvals should be a 1-D array and
+- yvals should be None. The return value is a Numeric array
++ yvals should be None. The return value is a numpy array
+ '[f(x[0]), f(x[1]), ..., f(x[-1])]'.
+
+ If f takes two parameters, then 'xvals' and 'yvals' should each be
+@@ -39,7 +39,7 @@
+
+ If 'ufunc=0', then 'f' is evaluated at each point using a Python
+ loop. This can be slow if the number of points is large. If
+- speed is an issue, you should write 'f' in terms of Numeric ufuncs
++ speed is an issue, you should write 'f' in terms of numpy ufuncs
+ and use the 'ufunc=1' feature described next.
+
+ If called with 'ufunc=1', then 'f' should be a function that is
+@@ -51,34 +51,33 @@
+
+ if yvals is None:
+ # f is a function of only one variable:
+- xvals = Numeric.asarray(xvals, typecode)
++ xvals = numpy.asarray(xvals, dtype)
+
+ if ufunc:
+ return f(xvals)
+ else:
+- if typecode is None:
+- typecode = xvals.typecode()
++ if dtype is None:
++ dtype = xvals.dtype.char
+
+- m = Numeric.zeros((len(xvals),), typecode)
++ m = numpy.zeros((len(xvals),), dtype)
+ for xi in range(len(xvals)):
+ x = xvals[xi]
+ m[xi] = f(x)
+ return m
+ else:
+ # f is a function of two variables:
+- xvals = Numeric.asarray(xvals, typecode)
+- yvals = Numeric.asarray(yvals, typecode)
++ xvals = numpy.asarray(xvals, dtype)
++ yvals = numpy.asarray(yvals, dtype)
+
+ if ufunc:
+- return f(xvals[:,Numeric.NewAxis], yvals[Numeric.NewAxis,:])
++ return f(xvals[:,numpy.newaxis], yvals[numpy.newaxis,:])
+ else:
+- if typecode is None:
++ if dtype is None:
+ # choose a result typecode based on what '+' would return
+ # (yecch!):
+- typecode = (Numeric.zeros((1,), xvals.typecode()) +
+- Numeric.zeros((1,), yvals.typecode())).typecode()
+-
+- m = Numeric.zeros((len(xvals), len(yvals)), typecode)
++ dtype = (numpy.zeros((1,), xvals.dtype.char) +
++ numpy.zeros((1,), yvals.dtype.char)).dtype.char
++ m = numpy.zeros((len(xvals), len(yvals)), dtype)
+ for xi in range(len(xvals)):
+ x = xvals[xi]
+ for yi in range(len(yvals)):
+diff -ur gnuplot-py-1.7/_Gnuplot.py gnuplot-py-1.7-numpy/_Gnuplot.py
+--- gnuplot-py-1.7/_Gnuplot.py 2003-10-17 17:28:10.000000000 +0300
++++ gnuplot-py-1.7-numpy/_Gnuplot.py 2007-11-20 22:37:26.000000000 +0200
+@@ -228,8 +228,8 @@
+
+ 'items' is a sequence of items, each of which should be a
+ 'PlotItem' of some kind, a string (interpreted as a function
+- string for gnuplot to evaluate), or a Numeric array (or
+- something that can be converted to a Numeric array).
++ string for gnuplot to evaluate), or a numpy array (or
++ something that can be converted to a numpy array).
+
+ """
+
+diff -ur gnuplot-py-1.7/__init__.py gnuplot-py-1.7-numpy/__init__.py
+--- gnuplot-py-1.7/__init__.py 2003-10-17 18:04:29.000000000 +0300
++++ gnuplot-py-1.7-numpy/__init__.py 2007-11-20 22:19:00.000000000 +0200
+@@ -128,9 +128,9 @@
+
+ Restrictions:
+
+- - Relies on the Numeric Python extension. This can be obtained from
+- "SourceForge", http://sourceforge.net/projects/numpy/. If you're
+- interested in gnuplot, you would probably also want NumPy anyway.
++ - Relies on the numpy Python extension. This can be obtained from
++ the Scipy group at <http://www.scipy.org/Download>.. If you're
++ interested in gnuplot, you would probably also want numpy anyway.
+
+ - Only a small fraction of gnuplot functionality is implemented as
+ explicit method functions. However, you can give arbitrary
+diff -ur gnuplot-py-1.7/NEWS.txt gnuplot-py-1.7-numpy/NEWS.txt
+--- gnuplot-py-1.7/NEWS.txt 2003-10-17 18:04:29.000000000 +0300
++++ gnuplot-py-1.7-numpy/NEWS.txt 2007-11-20 22:22:08.000000000 +0200
+@@ -57,7 +57,7 @@
+ equivalent.) If I find the time I might try to produce a version
+ that doesn't require Numeric at all, under either Python or Jython.
+
+-* Removed the oldplot.py module: (1) I doubt anybody is still using
++ Removed the oldplot.py module: (1) I doubt anybody is still using
+ it. (2) It seems to be broken anyway. (3) I don't have the energy to
+ fix or maintain it. Let me know if I'm wrong about point 1.
+
+@@ -222,10 +222,10 @@
+ dataset; e.g., what used to be written as
+
+ g = Gnuplot.Gnuplot()
+- x = Numeric.arange(100)/10.0
++ x = numpy.arange(100)/10.0
+ y = x**2
+ # Create an array of (x,y) pairs:
+- g.plot(Gnuplot.Data(Numeric.transpose((x, y))))
++ g.plot(Gnuplot.Data(numpy.transpose((x, y))))
+
+ can now be shortened to
+
+diff -ur gnuplot-py-1.7/PlotItems.py gnuplot-py-1.7-numpy/PlotItems.py
+--- gnuplot-py-1.7/PlotItems.py 2003-10-17 17:39:03.000000000 +0300
++++ gnuplot-py-1.7-numpy/PlotItems.py 2007-11-20 22:34:49.000000000 +0200
+@@ -23,7 +23,7 @@
+ except ImportError:
+ from StringIO import StringIO
+
+-import Numeric
++import numpy
+
+ import gp, utils, Errors
+
+@@ -471,12 +471,12 @@
+ return apply(_FileItem, (filename,), keyw)
+
+
+-def Data(*set, **keyw):
+- """Create and return a _FileItem representing the data from *set.
++def Data(*data, **keyw):
++ """Create and return a _FileItem representing the data from *data.
+
+ Create a '_FileItem' object (which is a type of 'PlotItem') out of
+- one or more Float Python Numeric arrays (or objects that can be
+- converted to a Float Numeric array). If the routine is passed a
++ one or more Float Python numpy arrays (or objects that can be
++ converted to a float numpy array). If the routine is passed a
+ single with multiple dimensions, then the last index ranges over
+ the values comprising a single data point (e.g., [<x>, <y>,
+ <sigma>]) and the rest of the indices select the data point. If
+@@ -508,29 +508,29 @@
+
+ """
+
+- if len(set) == 1:
+- # set was passed as a single structure
+- set = utils.float_array(set[0])
++ if len(data) == 1:
++ # data was passed as a single structure
++ data = utils.float_array(data[0])
+
+ # As a special case, if passed a single 1-D array, then it is
+ # treated as one value per point (by default, plotted against
+ # its index):
+- if len(set.shape) == 1:
+- set = set[:,Numeric.NewAxis]
++ if len(data.shape) == 1:
++ data = data[:,numpy.newaxis]
+ else:
+- # set was passed column by column (for example,
++ # data was passed column by column (for example,
+ # Data(x,y)); pack it into one big array (this will test
+ # that sizes are all the same):
+- set = utils.float_array(set)
+- dims = len(set.shape)
++ data = utils.float_array(data)
++ dims = len(data.shape)
+ # transpose so that the last index selects x vs. y:
+- set = Numeric.transpose(set, (dims-1,) + tuple(range(dims-1)))
++ data = numpy.transpose(data, (dims-1,) + tuple(range(dims-1)))
+ if keyw.has_key('cols'):
+ cols = keyw['cols']
+ del keyw['cols']
+- if type(cols) is types.IntType:
++ if isinstance(cols, types.IntType):
+ cols = (cols,)
+- set = Numeric.take(set, cols, -1)
++ data = numpy.take(data, cols, -1)
+
+ if keyw.has_key('inline'):
+ inline = keyw['inline']
+@@ -540,7 +540,7 @@
+
+ # Output the content into a string:
+ f = StringIO()
+- utils.write_array(f, set)
++ utils.write_array(f, data)
+ content = f.getvalue()
+ if inline:
+ return apply(_InlineFileItem, (content,), keyw)
+@@ -610,7 +610,7 @@
+ raise Errors.DataError('data array must be two-dimensional')
+
+ if xvals is None:
+- xvals = Numeric.arange(numx)
++ xvals = numpy.arange(numx)
+ else:
+ xvals = utils.float_array(xvals)
+ if xvals.shape != (numx,):
+@@ -619,7 +619,7 @@
+ 'the first dimension of the data array')
+
+ if yvals is None:
+- yvals = Numeric.arange(numy)
++ yvals = numpy.arange(numy)
+ else:
+ yvals = utils.float_array(yvals)
+ if yvals.shape != (numy,):
+@@ -647,17 +647,17 @@
+ # documentation has the roles of x and y exchanged. We ignore
+ # the documentation and go with the code.
+
+- mout = Numeric.zeros((numy + 1, numx + 1), Numeric.Float32)
++ mout = numpy.zeros((numy + 1, numx + 1), numpy.float32)
+ mout[0,0] = numx
+- mout[0,1:] = xvals.astype(Numeric.Float32)
+- mout[1:,0] = yvals.astype(Numeric.Float32)
++ mout[0,1:] = xvals.astype(numpy.float32)
++ mout[1:,0] = yvals.astype(numpy.float32)
+ try:
+ # try copying without the additional copy implied by astype():
+- mout[1:,1:] = Numeric.transpose(data)
++ mout[1:,1:] = numpy.transpose(data)
+ except:
+ # if that didn't work then downcasting from double
+ # must be necessary:
+- mout[1:,1:] = Numeric.transpose(data.astype(Numeric.Float32))
++ mout[1:,1:] = numpy.transpose(data.astype(numpy.float32))
+
+ content = mout.tostring()
+ if gp.GnuplotOpts.prefer_fifo_data:
+@@ -668,10 +668,10 @@
+ # output data to file as "x y f(x)" triplets. This
+ # requires numy copies of each x value and numx copies of
+ # each y value. First reformat the data:
+- set = Numeric.transpose(
+- Numeric.array(
+- (Numeric.transpose(Numeric.resize(xvals, (numy, numx))),
+- Numeric.resize(yvals, (numx, numy)),
++ set = numpy.transpose(
++ numpy.array(
++ (numpy.transpose(numpy.resize(xvals, (numy, numx))),
++ numpy.resize(yvals, (numx, numy)),
+ data)), (1,2,0))
+
+ # Now output the data with the usual routine. This will
+diff -ur gnuplot-py-1.7/README.txt gnuplot-py-1.7-numpy/README.txt
+--- gnuplot-py-1.7/README.txt 2003-10-19 17:52:35.000000000 +0300
++++ gnuplot-py-1.7-numpy/README.txt 2007-11-20 22:35:30.000000000 +0200
+@@ -65,8 +65,8 @@
+
+ Obviously, you must have the gnuplot program if Gnuplot.py is to be of
+ any use to you. Gnuplot can be obtained via
+-<http://www.gnuplot.info>. You also need Python's Numerical
+-extension, which is available from <http://numpy.sourceforge.net>.
++<http://www.gnuplot.info>. You also need a copy of the numpy package, which
++is available from the Scipy group at <http://www.scipy.org/Download>.
+
+ Gnuplot.py uses Python distutils
+ <http://www.python.org/doc/current/inst/inst.html> and can be
+diff -ur gnuplot-py-1.7/setup.py gnuplot-py-1.7-numpy/setup.py
+--- gnuplot-py-1.7/setup.py 2003-10-17 17:52:28.000000000 +0300
++++ gnuplot-py-1.7-numpy/setup.py 2007-11-20 22:19:20.000000000 +0200
+@@ -31,7 +31,7 @@
+ author_email='mhagger@alum.mit.edu',
+ url='http://gnuplot-py.sourceforge.net',
+ license='LGPL',
+- licence='LGPL', # Spelling error in distutils
++ #licence='LGPL', # Spelling error in distutils
+
+ # Description of the package in the distribution
+ package_dir={'Gnuplot' : '.'},
+diff -ur gnuplot-py-1.7/test.py gnuplot-py-1.7-numpy/test.py
+--- gnuplot-py-1.7/test.py 2003-10-17 17:28:10.000000000 +0300
++++ gnuplot-py-1.7-numpy/test.py 2007-11-20 22:43:26.000000000 +0200
+@@ -17,8 +17,7 @@
+ __cvs_version__ = '$Revision: 1.1 $'
+
+ import os, time, math, tempfile
+-import Numeric
+-from Numeric import NewAxis
++import numpy
+
+ try:
+ import Gnuplot, Gnuplot.PlotItems, Gnuplot.funcutils
+@@ -55,7 +54,7 @@
+ filename1 = tempfile.mktemp()
+ f = open(filename1, 'w')
+ try:
+- for x in Numeric.arange(100)/5. - 10.:
++ for x in numpy.arange(100.)/5. - 10.:
+ f.write('%s %s %s\n' % (x, math.cos(x), math.sin(x)))
+ f.close()
+
+@@ -137,10 +136,10 @@
+ g.plot(f)
+
+ print '############### test Data ###################################'
+- x = Numeric.arange(100)/5. - 10.
+- y1 = Numeric.cos(x)
+- y2 = Numeric.sin(x)
+- d = Numeric.transpose((x,y1,y2))
++ x = numpy.arange(100)/5. - 10.
++ y1 = numpy.cos(x)
++ y2 = numpy.sin(x)
++ d = numpy.transpose((x,y1,y2))
+
+ wait('Plot Data against its index')
+ g.plot(Gnuplot.Data(y2, inline=0))
+@@ -173,7 +172,7 @@
+ g.plot(Gnuplot.Data(d, title='Cosine of x'))
+
+ print '############### test compute_Data ###########################'
+- x = Numeric.arange(100)/5. - 10.
++ x = numpy.arange(100)/5. - 10.
+
+ wait('Plot Data, computed by Gnuplot.py')
+ g.plot(Gnuplot.funcutils.compute_Data(x, lambda x: math.cos(x), inline=0))
+@@ -235,14 +234,14 @@
+
+ print '############### test GridData and compute_GridData ##########'
+ # set up x and y values at which the function will be tabulated:
+- x = Numeric.arange(35)/2.0
+- y = Numeric.arange(30)/10.0 - 1.5
++ x = numpy.arange(35)/2.0
++ y = numpy.arange(30)/10.0 - 1.5
+ # Make a 2-d array containing a function of x and y. First create
+ # xm and ym which contain the x and y values in a matrix form that
+ # can be `broadcast' into a matrix of the appropriate shape:
+- xm = x[:,NewAxis]
+- ym = y[NewAxis,:]
+- m = (Numeric.sin(xm) + 0.1*xm) - ym**2
++ xm = x[:,numpy.newaxis]
++ ym = y[numpy.newaxis,:]
++ m = (numpy.sin(xm) + 0.1*xm) - ym**2
+ wait('a function of two variables from a GridData file')
+ g('set parametric')
+ g('set data style lines')
+@@ -264,7 +263,7 @@
+
+ wait('Use compute_GridData in ufunc and binary mode')
+ g.splot(Gnuplot.funcutils.compute_GridData(
+- x,y, lambda x,y: Numeric.sin(x) + 0.1*x - y**2,
++ x,y, lambda x,y: numpy.sin(x) + 0.1*x - y**2,
+ ufunc=1, binary=1,
+ ))
+
+diff -ur gnuplot-py-1.7/utils.py gnuplot-py-1.7-numpy/utils.py
+--- gnuplot-py-1.7/utils.py 2003-10-17 17:38:44.000000000 +0300
++++ gnuplot-py-1.7-numpy/utils.py 2007-11-20 22:21:24.000000000 +0200
+@@ -17,28 +17,32 @@
+ __cvs_version__ = '$Revision: 1.1 $'
+
+ import string
+-import Numeric
++import numpy
+
+
+ def float_array(m):
+- """Return the argument as a Numeric array of type at least 'Float32'.
++ """Return the argument as a numpy array of type at least 'Float32'.
+
+ Leave 'Float64' unchanged, but upcast all other types to
+ 'Float32'. Allow also for the possibility that the argument is a
+- python native type that can be converted to a Numeric array using
+- 'Numeric.asarray()', but in that case don't worry about
++ python native type that can be converted to a numpy array using
++ 'numpy.asarray()', but in that case don't worry about
+ downcasting to single-precision float.
+
+ """
+
+ try:
+ # Try Float32 (this will refuse to downcast)
+- return Numeric.asarray(m, Numeric.Float32)
++ return numpy.asarray(m, numpy.float32)
+ except TypeError:
+ # That failure might have been because the input array was
+- # of a wider data type than Float32; try to convert to the
++ # of a wider data type than float32; try to convert to the
+ # largest floating-point type available:
+- return Numeric.asarray(m, Numeric.Float)
++ try:
++ return numpy.asarray(m, numpy.float_)
++ except TypeError:
++ print "Fatal: array dimensions not equal!"
++ return None
+
+
+ def write_array(f, set,