1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Default device bitmap copying implementation */
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gsbittab.h"
#include "gsrect.h"
#include "gsropt.h"
#include "gxdcolor.h"
#include "gxdevice.h"
#include "gxdevmem.h"
#include "gdevmem.h"
#include "gxgetbit.h"
#undef mdev
#include "gxcpath.h"
/* Implement copy_mono by filling lots of small rectangles. */
/* This is very inefficient, but it works as a default. */
int
gx_default_copy_mono(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index zero, gx_color_index one)
{
bool invert;
gx_color_index color;
gx_device_color devc;
if (!data)
return gs_throw_code(gs_error_unknownerror);
fit_copy(dev, data, dx, raster, id, x, y, w, h);
if (!data)
return gs_throw_code(gs_error_unknownerror);
if (one != gx_no_color_index) {
invert = false;
color = one;
if (zero != gx_no_color_index) {
int code = (*dev_proc(dev, fill_rectangle))
(dev, x, y, w, h, zero);
if (code < 0)
return code;
}
} else {
invert = true;
color = zero;
}
if (!data)
return gs_throw_code(gs_error_unknownerror);
set_nonclient_dev_color(&devc, color);
if (!data)
return gs_throw_code(gs_error_unknownerror);
return gx_dc_default_fill_masked
(&devc, data, dx, raster, id, x, y, w, h, dev, rop3_T, invert);
}
/* Implement copy_color by filling lots of small rectangles. */
/* This is very inefficient, but it works as a default. */
int
gx_default_copy_color(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id,
int x, int y, int w, int h)
{
int depth = dev->color_info.depth;
byte mask;
dev_proc_fill_rectangle((*fill));
const byte *row;
int iy;
if (depth == 1)
return (*dev_proc(dev, copy_mono)) (dev, data, dx, raster, id,
x, y, w, h,
(gx_color_index) 0, (gx_color_index) 1);
fit_copy(dev, data, dx, raster, id, x, y, w, h);
fill = dev_proc(dev, fill_rectangle);
mask = (byte) ((1 << depth) - 1);
for (row = data, iy = 0; iy < h; row += raster, ++iy) {
int ix;
gx_color_index c0 = gx_no_color_index;
const byte *ptr = row + ((dx * depth) >> 3);
int i0;
for (i0 = ix = 0; ix < w; ++ix) {
gx_color_index color;
if (depth >= 8) {
color = *ptr++;
switch (depth) {
case 64:
color = (color << 8) + *ptr++;
case 56:
color = (color << 8) + *ptr++;
case 48:
color = (color << 8) + *ptr++;
case 40:
color = (color << 8) + *ptr++;
case 32:
color = (color << 8) + *ptr++;
case 24:
color = (color << 8) + *ptr++;
case 16:
color = (color << 8) + *ptr++;
}
} else {
uint dbit = (-(ix + dx + 1) * depth) & 7;
color = (*ptr >> dbit) & mask;
if (dbit == 0)
ptr++;
}
if (color != c0) {
if (ix > i0) {
int code = (*fill)
(dev, i0 + x, iy + y, ix - i0, 1, c0);
if (code < 0)
return code;
}
c0 = color;
i0 = ix;
}
}
if (ix > i0) {
int code = (*fill) (dev, i0 + x, iy + y, ix - i0, 1, c0);
if (code < 0)
return code;
}
}
return 0;
}
int
gx_no_copy_alpha(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{
return_error(gs_error_unknownerror);
}
/* Currently we really should only be here if the target device is planar
AND it supports devn colors AND is 8 or 16 bit. For example tiffsep
and psdcmyk may make use of this if AA is enabled. It is basically
designed for devices that need more than 64 bits for color support
So that I can follow things and make it readable for future generations,
I am not using the macro nightmare that default_copy_alpha uses. */
int
gx_default_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
const gx_drawing_color *pdcolor, int depth)
{
const byte *row_alpha;
gs_memory_t *mem = dev->memory;
int bpp = dev->color_info.depth;
uchar ncomps = dev->color_info.num_components;
uint out_raster;
int code = 0;
gx_color_value src_cv[GS_CLIENT_COLOR_MAX_COMPONENTS];
gx_color_value curr_cv[GS_CLIENT_COLOR_MAX_COMPONENTS];
gx_color_value blend_cv[GS_CLIENT_COLOR_MAX_COMPONENTS];
int ry;
uchar k, j;
gs_get_bits_params_t gb_params;
byte *src_planes[GS_CLIENT_COLOR_MAX_COMPONENTS];
gs_int_rect gb_rect;
int byte_depth;
int shift, word_width;
gx_color_value *composite;
byte *gb_buff;
int x_curr, w_curr, gb_buff_start;
byte_depth = bpp / ncomps;
shift = 16 - byte_depth;
word_width = byte_depth >> 3;
fit_copy(dev, data, data_x, raster, id, x, y, width, height);
row_alpha = data;
out_raster = bitmap_raster(width * byte_depth);
gb_buff = gs_alloc_bytes(mem, out_raster * ncomps, "copy_alpha_hl_color(gb_buff)");
if (gb_buff == 0) {
code = gs_note_error(gs_error_VMerror);
return code;
}
for (k = 0; k < ncomps; k++) {
src_cv[k] = pdcolor->colors.devn.values[k];
}
/* Initialize the get_bits parameters. Here we just get a plane at a time. */
gb_params.options = GB_COLORS_NATIVE
| GB_ALPHA_NONE
| GB_DEPTH_ALL
| GB_PACKING_PLANAR
| GB_RETURN_COPY
| GB_ALIGN_STANDARD
| GB_OFFSET_0
| GB_RASTER_STANDARD
| GB_SELECT_PLANES;
gb_rect.p.x = x;
gb_rect.q.x = x + width;
for (ry = y; ry < y + height; row_alpha += raster, ++ry) {
int sx, rx;
gb_rect.p.y = ry;
gb_rect.q.y = ry+1;
for (k = 0; k < ncomps; k++) {
/* First set the params to zero for all planes except the one we want */
/* I am not sure why get_bits_rectangle for the planar device can
not hand back the data in a proper planar form. To get the
individual planes seems that I need to jump through some hoops
here */
for (j = 0; j < ncomps; j++)
gb_params.data[j] = 0;
gb_params.data[k] = gb_buff + k * out_raster;
code = dev_proc(dev, get_bits_rectangle) (dev, &gb_rect,
&gb_params);
src_planes[k] = gb_params.data[k];
if (code < 0) {
gs_free_object(mem, gb_buff, "copy_alpha_hl_color");
return code;
}
}
/* At this point we have to carry around some additional variables
so that we can handle any buffer flushes due to alpha == 0 values.
See below why this is needed */
x_curr = x;
w_curr = 0;
gb_buff_start = 0;
for (sx = data_x, rx = x; sx < data_x + width; ++sx, ++rx) {
int alpha2, alpha;
w_curr += 1;
switch (depth)
{
case 2:
alpha = ((row_alpha[sx >> 2] >> ((3 - (sx & 3)) << 1)) & 3) * 85;
break;
case 4:
alpha2 = row_alpha[sx >> 1];
alpha = (sx & 1 ? alpha2 & 0xf : alpha2 >> 4) * 17;
break;
case 8:
alpha = row_alpha[sx];
break;
default:
return_error(gs_error_rangecheck);
}
if (alpha == 0) {
/* With alpha 0 we want to avoid writing out this value.
* While it is true that writting it out leaves the color
* unchanged, any device that's watching what pixels are
* written (such as the pattern tile devices) may have problems.
* As in gx_default_copy_alpha the right thing to do is to write
* out what we have so far and then continue to collect when we
* get back to non zero alpha. */
code = dev_proc(dev, copy_planes)(dev, &(gb_buff[gb_buff_start]),
0, out_raster, gs_no_bitmap_id,
x_curr, ry, w_curr-1, 1, 1);
if (code < 0) {
gs_free_object(mem, gb_buff, "copy_alpha_hl_color");
return code;
}
/* reset ourselves */
gb_buff_start = gb_buff_start + w_curr * word_width;
w_curr = 0;
x_curr = rx + 1;
} else {
if (alpha == 255) {
/* Just use the new color. */
composite = &(src_cv[0]);
} else {
/* We need to do the weighting by the alpha value */
alpha += (alpha>>7); /* Expand from 0..255->0..256 */
/* First get the old color */
for (k = 0; k < ncomps; k++) {
/* We only have 8 and 16 bit depth to worry about.
However, this stuff should really be done with
the device encode/decode procedure. */
byte *ptr = ((src_planes[k]) + (sx - data_x) * word_width);
curr_cv[k] = 0;
switch (word_width) {
case 2:
curr_cv[k] += (*ptr++ << 8);
curr_cv[k] += *ptr;
break;
case 1:
curr_cv[k] += *ptr;
curr_cv[k] += curr_cv[k] << 8;
}
/* Now compute the new color which is a blend of
the old and the new */
blend_cv[k] = ((curr_cv[k]<<8) +
(((long) src_cv[k] - (long) curr_cv[k]) * alpha))>>8;
composite = &(blend_cv[0]);
}
}
/* Update our plane data buffers. Just reuse the current one */
for (k = 0; k < ncomps; k++) {
byte *ptr = ((src_planes[k]) + (sx - data_x) * word_width);
switch (word_width) {
case 2:
*ptr++ = composite[k] >> 8;
case 1:
*ptr++ = composite[k] >> shift;
}
}
} /* else on alpha != 0 */
} /* loop on x */
/* Flush what ever we have left. We may only have a partial due to
the presence of alpha = 0 values */
code = dev_proc(dev, copy_planes)(dev, &(gb_buff[gb_buff_start]),
0, out_raster, gs_no_bitmap_id,
x_curr, ry, w_curr, 1, 1);
} /* loop on y */
gs_free_object(mem, gb_buff, "copy_alpha_hl_color");
return code;
}
int
gx_default_copy_alpha(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{ /* This might be called with depth = 1.... */
if (depth == 1)
return (*dev_proc(dev, copy_mono)) (dev, data, data_x, raster, id,
x, y, width, height,
gx_no_color_index, color);
/*
* Simulate alpha by weighted averaging of RGB values.
* This is very slow, but functionally correct.
*/
{
const byte *row;
gs_memory_t *mem = dev->memory;
int bpp = dev->color_info.depth;
uchar ncomps = dev->color_info.num_components;
uint in_size = gx_device_raster_chunky(dev, false);
byte *lin;
uint out_size;
byte *lout;
int code = 0;
gx_color_value color_cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
int ry, lx;
gs_int_rect rect;
fit_copy(dev, data, data_x, raster, id, x, y, width, height);
row = data;
out_size = bitmap_raster(width * bpp);
lin = gs_alloc_bytes(mem, in_size, "copy_alpha(lin)");
lout = gs_alloc_bytes(mem, out_size, "copy_alpha(lout)");
if (lin == 0 || lout == 0) {
code = gs_note_error(gs_error_VMerror);
goto out;
}
(*dev_proc(dev, decode_color)) (dev, color, color_cv);
rect.p.x = 0;
rect.q.x = dev->width;
for (ry = y; ry < y + height; row += raster, ++ry) {
byte *line;
int sx, rx;
byte *l_dptr = lout;
int l_dbit = 0;
byte l_dbyte = ((l_dbit) ? (byte)(*(l_dptr) & (0xff00 >> (l_dbit))) : 0);
int l_xprev = x;
gs_get_bits_params_t params;
params.options = (GB_ALIGN_STANDARD |
(GB_RETURN_COPY | GB_RETURN_POINTER) |
GB_OFFSET_0 |
GB_RASTER_STANDARD | GB_PACKING_CHUNKY |
GB_COLORS_NATIVE | GB_ALPHA_NONE);
params.x_offset = 0;
params.raster = bitmap_raster(dev->width * dev->color_info.depth);
params.data[0] = lin;
rect.p.y = ry;
rect.q.y = ry+1;
code = (*dev_proc(dev, get_bits_rectangle))(dev, &rect,
¶ms);
if (code < 0)
break;
line = params.data[0];
lx = x;
for (sx = data_x, rx = x; sx < data_x + width; ++sx, ++rx) {
gx_color_index previous = gx_no_color_index;
gx_color_index composite;
int alpha2, alpha;
switch(depth)
{
case 2:
/* map 0 - 3 to 0 - 15 */
alpha = ((row[sx >> 2] >> ((3 - (sx & 3)) << 1)) & 3) * 85;
break;
case 4:
alpha2 = row[sx >> 1],
alpha = (sx & 1 ? alpha2 & 0xf : alpha2 >> 4) * 17;
break;
case 8:
alpha = row[sx];
break;
default:
return_error(gs_error_rangecheck);
}
blend:
if (alpha == 0) {
/* Previously the code used to just write out the previous
* colour when the alpha was 0, but that's wrong. It leaves
* the underlying colour unchanged, but has the effect of
* making this pixel appear solid in any device that's
* watching what pixels are written (such as the pattern
* tile devices). The right thing to do is to write out
* the buffered accumulator, and skip over any pixels that
* are completely clear. */
if (rx > l_xprev ) {
sample_store_flush(l_dptr, l_dbit, l_dbyte);
code = (*dev_proc(dev, copy_color))
(dev, lout, l_xprev - (lx), out_size,
gx_no_bitmap_id, l_xprev, ry, (rx) - l_xprev, 1);
if ( code < 0 )
return code;
}
l_dptr = lout;
l_dbit = 0;
l_dbyte = (l_dbit ? (byte)(*l_dptr & (0xff00 >> l_dbit)) : 0);
l_xprev = rx+1;
lx = rx+1;
} else {
if (alpha == 255) { /* Just write the new color. */
composite = color;
} else {
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
uchar i;
int alpha2 = alpha + (alpha>>7);
if (previous == gx_no_color_index) { /* Extract the old color. */
if (bpp < 8) {
const uint bit = rx * bpp;
const byte *src = line + (bit >> 3);
previous =
(*src >> (8 - ((bit & 7) + bpp))) &
((1 << bpp) - 1);
} else {
const byte *src = line + (rx * (bpp >> 3));
previous = 0;
switch (bpp >> 3) {
case 8:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 56);
case 7:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 48);
case 6:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 40);
case 5:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 32);
case 4:
previous += (gx_color_index) * src++ << 24;
case 3:
previous += (gx_color_index) * src++ << 16;
case 2:
previous += (gx_color_index) * src++ << 8;
case 1:
previous += *src++;
}
}
}
(*dev_proc(dev, decode_color)) (dev, previous, cv);
#if ARCH_INTS_ARE_SHORT
# define b_int long
#else
# define b_int int
#endif
#define make_shade(old, clr, alpha) \
(((((b_int)(old))<<8) + (((b_int)(clr) - (b_int)(old)) * (alpha)))>>8)
for (i=0; i<ncomps; i++)
cv[i] = make_shade(cv[i], color_cv[i], alpha2);
#undef b_int
#undef make_shade
composite =
(*dev_proc(dev, encode_color)) (dev, cv);
if (composite == gx_no_color_index) { /* The device can't represent this color. */
/* Move the alpha value towards 0 or 1. */
if (alpha == 127) /* move 1/2 towards 1 */
++alpha;
alpha = (alpha & 128) | (alpha >> 1);
goto blend;
}
}
if (sizeof(composite) > 4) {
if (sample_store_next64(composite, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0)
return_error(gs_error_rangecheck);
}
else {
if (sample_store_next32(composite, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0)
return_error(gs_error_rangecheck);
}
}
}
if ( rx > l_xprev ) {
sample_store_flush(l_dptr, l_dbit, l_dbyte);
code = (*dev_proc(dev, copy_color))
(dev, lout, l_xprev - lx, out_size,
gx_no_bitmap_id, l_xprev, ry, rx - l_xprev, 1);
if (code < 0)
return code;
}
}
out:gs_free_object(mem, lout, "copy_alpha(lout)");
gs_free_object(mem, lin, "copy_alpha(lin)");
return code;
}
}
int
gx_default_fill_mask(gx_device * orig_dev,
const byte * data, int dx, int raster, gx_bitmap_id id,
int x, int y, int w, int h,
const gx_drawing_color * pdcolor, int depth,
gs_logical_operation_t lop, const gx_clip_path * pcpath)
{
gx_device *dev = orig_dev;
gx_device_clip cdev;
if (w == 0 || h == 0)
return 0;
if (pcpath != 0)
{
gs_fixed_rect rect;
int tmp;
rect.p.x = int2fixed(x);
rect.p.y = int2fixed(y);
rect.q.x = int2fixed(x+w);
rect.q.y = int2fixed(y+h);
dev = gx_make_clip_device_on_stack_if_needed(&cdev, pcpath, dev, &rect);
if (dev == NULL)
return 0;
/* Clip region if possible */
tmp = fixed2int(rect.p.x);
if (tmp > x)
{
dx += tmp-x;
x = tmp;
}
tmp = fixed2int(rect.q.x);
if (tmp < x+w)
w = tmp-x;
tmp = fixed2int(rect.p.y);
if (tmp > y)
{
data += (tmp-y) * raster;
y = tmp;
}
tmp = fixed2int(rect.q.y);
if (tmp < y+h)
h = tmp-y;
}
if (depth > 1) {
/****** CAN'T DO ROP OR HALFTONE WITH ALPHA ******/
return (*dev_proc(dev, copy_alpha))
(dev, data, dx, raster, id, x, y, w, h,
gx_dc_pure_color(pdcolor), depth);
} else
return pdcolor->type->fill_masked(pdcolor, data, dx, raster, id,
x, y, w, h, dev, lop, false);
}
/* Default implementation of strip_tile_rect_devn. With the current design
only devices that support devn color will be making use of this
procedure and those are planar devices. So we have an implemenation
for planar devices and not a default implemenetation at this time. */
int
gx_default_strip_tile_rect_devn(gx_device * dev, const gx_strip_bitmap * tiles,
int x, int y, int w, int h, const gx_drawing_color * pdcolor0,
const gx_drawing_color * pdcolor1, int px, int py)
{
return_error(gs_error_unregistered);
}
/* Default implementation of strip_tile_rectangle */
int
gx_default_strip_tile_rectangle(gx_device * dev, const gx_strip_bitmap * tiles,
int x, int y, int w, int h, gx_color_index color0, gx_color_index color1,
int px, int py)
{ /* Fill the rectangle in chunks. */
int width = tiles->size.x;
int height = tiles->size.y;
int raster = tiles->raster;
int rwidth = tiles->rep_width;
int rheight = tiles->rep_height;
int shift = tiles->shift;
gs_id tile_id = tiles->id;
if (rwidth == 0 || rheight == 0)
return_error(gs_error_unregistered); /* Must not happen. */
fit_fill_xy(dev, x, y, w, h);
#ifdef DEBUG
if (gs_debug_c('t')) {
int ptx, pty;
const byte *ptp = tiles->data;
dmlprintf4(dev->memory, "[t]tile %dx%d raster=%d id=%lu;",
tiles->size.x, tiles->size.y, tiles->raster, tiles->id);
dmlprintf6(dev->memory, " x,y=%d,%d w,h=%d,%d p=%d,%d\n",
x, y, w, h, px, py);
dmlputs(dev->memory, "");
for (pty = 0; pty < tiles->size.y; pty++) {
dmprintf(dev->memory, " ");
for (ptx = 0; ptx < tiles->raster; ptx++)
dmprintf1(dev->memory, "%3x", *ptp++);
}
dmputc(dev->memory, '\n');
}
#endif
{ /*
* Note: we can't do the following computations until after
* the fit_fill_xy.
*/
int xoff =
(shift == 0 ? px :
px + (y + py) / rheight * tiles->rep_shift);
int irx = ((rwidth & (rwidth - 1)) == 0 ? /* power of 2 */
(x + xoff) & (rwidth - 1) :
(x + xoff) % rwidth);
int ry = ((rheight & (rheight - 1)) == 0 ? /* power of 2 */
(y + py) & (rheight - 1) :
(y + py) % rheight);
int icw = width - irx;
int ch = height - ry;
byte *row = tiles->data + ry * raster;
dev_proc_copy_mono((*proc_mono));
dev_proc_copy_color((*proc_color));
dev_proc_copy_planes((*proc_planes));
int code = 0;
if (color0 == gx_no_color_index && color1 == gx_no_color_index) {
if (tiles->num_planes > 1) {
proc_mono = 0;
proc_color = 0;
proc_planes = dev_proc(dev, copy_planes);
} else {
proc_planes = 0;
proc_color = dev_proc(dev, copy_color);
proc_mono = 0;
}
} else {
proc_planes = 0;
proc_color = 0;
proc_mono = dev_proc(dev, copy_mono);
}
#define GX_DEFAULT_COPY_TILE(dev, srcx, tx, ty, tw, th, tid) do {\
if_debug6m('t', (dev)->memory, " copy id=%lu sx=%d => x=%d y=%d w=%d h=%d\n", tid, srcx, tx, ty, tw, th);\
if (tiles->num_planes > 1) {\
if (proc_planes)\
code = (*proc_planes)(dev, row, srcx, raster, tid, tx, ty, tw, th, height);\
} else {\
if (proc_color != 0) {\
code = (*proc_color)(dev, row, srcx, raster, tid, tx, ty, tw, th);\
} else {\
if (proc_mono)\
code = (*proc_mono)(dev, row, srcx, raster, tid, tx, ty, tw, th, color0, color1);\
else code = 0;\
}\
}\
if (code < 0) return_error(code);\
} while (0);
if (ch >= h) { /* Shallow operation */
if (icw >= w) { /* Just one (partial) tile to transfer. */
GX_DEFAULT_COPY_TILE(dev, irx, x, y, w, h, (w == width && h == height ? tile_id : gs_no_bitmap_id));
} else {
int ex = x + w;
int fex = ex - width;
int cx = x + icw;
ulong id = (h == height ? tile_id : gs_no_bitmap_id);
GX_DEFAULT_COPY_TILE(dev, irx, x, y, icw, h, gs_no_bitmap_id);
while (cx <= fex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, y, width, h, id);
cx += width;
}
if (cx < ex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, y, ex - cx, h, gs_no_bitmap_id);
}
}
} else if (icw >= w && shift == 0) {
/* Narrow operation, no shift */
int ey = y + h;
int fey = ey - height;
int cy = y + ch;
ulong id = (w == width ? tile_id : gs_no_bitmap_id);
GX_DEFAULT_COPY_TILE(dev, irx, x, y, w, ch, (ch == height ? id : gs_no_bitmap_id));
row = tiles->data;
do {
ch = (cy > fey ? ey - cy : height);
GX_DEFAULT_COPY_TILE(dev, irx, x, cy, w, ch,
(ch == height ? id : gs_no_bitmap_id));
}
while ((cy += ch) < ey);
} else {
/* Full operation. If shift != 0, some scan lines */
/* may be narrow. We could test shift == 0 in advance */
/* and use a slightly faster loop, but right now */
/* we don't bother. */
int ex = x + w, ey = y + h;
int fex = ex - width, fey = ey - height;
int cx, cy;
for (cy = y;;) {
ulong id = (ch == height ? tile_id : gs_no_bitmap_id);
if (icw >= w) {
GX_DEFAULT_COPY_TILE(dev, irx, x, cy, w, ch,
(w == width ? id : gs_no_bitmap_id));
} else {
GX_DEFAULT_COPY_TILE(dev, irx, x, cy, icw, ch, gs_no_bitmap_id);
cx = x + icw;
while (cx <= fex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, cy, width, ch, id);
cx += width;
}
if (cx < ex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, cy, ex - cx, ch, gs_no_bitmap_id);
}
}
if ((cy += ch) >= ey)
break;
ch = (cy > fey ? ey - cy : height);
if ((irx += shift) >= rwidth)
irx -= rwidth;
icw = width - irx;
row = tiles->data;
}
}
#undef GX_DEFAULT_COPY_TILE
}
return 0;
}
int
gx_no_strip_copy_rop2(gx_device * dev,
const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_strip_bitmap * textures, const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y, gs_logical_operation_t lop,
uint planar_height)
{
return_error(gs_error_unknownerror); /* not implemented */
}
/* ---------------- Unaligned copy operations ---------------- */
/*
* Implementing unaligned operations in terms of the standard aligned
* operations requires adjusting the bitmap origin and/or the raster to be
* aligned. Adjusting the origin is simple; adjusting the raster requires
* doing the operation one scan line at a time.
*/
int
gx_copy_mono_unaligned(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index zero, gx_color_index one)
{
dev_proc_copy_mono((*copy_mono)) = dev_proc(dev, copy_mono);
uint offset = ALIGNMENT_MOD(data, align_bitmap_mod);
int step = raster & (align_bitmap_mod - 1);
/* Adjust the origin. */
data -= offset;
dx += offset << 3;
/* Adjust the raster. */
if (!step) { /* No adjustment needed. */
return (*copy_mono) (dev, data, dx, raster, id,
x, y, w, h, zero, one);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = data;
int d = dx;
int code = 0;
int i;
for (i = 0; i < h && code >= 0;
++i, p += raster - step, d += step << 3
)
code = (*copy_mono) (dev, p, d, raster, gx_no_bitmap_id,
x, y + i, w, 1, zero, one);
return code;
}
}
int
gx_copy_color_unaligned(gx_device * dev, const byte * data,
int data_x, int raster, gx_bitmap_id id,
int x, int y, int width, int height)
{
dev_proc_copy_color((*copy_color)) = dev_proc(dev, copy_color);
int depth = dev->color_info.depth;
uint offset = (uint) (data - (const byte *)0) & (align_bitmap_mod - 1);
int step = raster & (align_bitmap_mod - 1);
/*
* Adjust the origin.
* We have to do something very special for 24-bit data,
* because that is the only depth that doesn't divide
* align_bitmap_mod exactly. In particular, we need to find
* M*B + R == 0 mod 3, where M is align_bitmap_mod, R is the
* offset value just calculated, and B is an integer unknown;
* the new value of offset will be M*B + R.
*/
if (depth == 24)
offset += (offset % 3) *
(align_bitmap_mod * (3 - (align_bitmap_mod % 3)));
data -= offset;
data_x += (offset << 3) / depth;
/* Adjust the raster. */
if (!step) { /* No adjustment needed. */
return (*copy_color) (dev, data, data_x, raster, id,
x, y, width, height);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = data;
int d = data_x;
int dstep = (step << 3) / depth;
int code = 0;
int i;
for (i = 0; i < height && code >= 0;
++i, p += raster - step, d += dstep
)
code = (*copy_color) (dev, p, d, raster, gx_no_bitmap_id,
x, y + i, width, 1);
return code;
}
}
int
gx_copy_alpha_unaligned(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{
dev_proc_copy_alpha((*copy_alpha)) = dev_proc(dev, copy_alpha);
uint offset = (uint) (data - (const byte *)0) & (align_bitmap_mod - 1);
int step = raster & (align_bitmap_mod - 1);
/* Adjust the origin. */
data -= offset;
data_x += (offset << 3) / depth;
/* Adjust the raster. */
if (!step) { /* No adjustment needed. */
return (*copy_alpha) (dev, data, data_x, raster, id,
x, y, width, height, color, depth);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = data;
int d = data_x;
int dstep = (step << 3) / depth;
int code = 0;
int i;
for (i = 0; i < height && code >= 0;
++i, p += raster - step, d += dstep
)
code = (*copy_alpha) (dev, p, d, raster, gx_no_bitmap_id,
x, y + i, width, 1, color, depth);
return code;
}
}
|