1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
#!/usr/bin/env python
# -*- coding: iso-8859-1 -*-
# Note that PyPy contains also a built-in module 'sha' which will hide
# this one if compiled in.
"""A sample implementation of SHA-1 in pure Python.
Framework adapted from Dinu Gherman's MD5 implementation by
J. Hall�n and L. Creighton. SHA-1 implementation based directly on
the text of the NIST standard FIPS PUB 180-1.
"""
__date__ = '2004-11-17'
__version__ = 0.91 # Modernised by J. Hall�n and L. Creighton for Pypy
import struct, copy
# ======================================================================
# Bit-Manipulation helpers
#
# _long2bytes() was contributed by Barry Warsaw
# and is reused here with tiny modifications.
# ======================================================================
def _long2bytesBigEndian(n, blocksize=0):
"""Convert a long integer to a byte string.
If optional blocksize is given and greater than zero, pad the front
of the byte string with binary zeros so that the length is a multiple
of blocksize.
"""
# After much testing, this algorithm was deemed to be the fastest.
s = b''
pack = struct.pack
while n > 0:
s = pack('>I', n & 0xffffffff) + s
n = n >> 32
# Strip off leading zeros.
for i in range(len(s)):
if s[i] != '\000':
break
else:
# Only happens when n == 0.
s = '\000'
i = 0
s = s[i:]
# Add back some pad bytes. This could be done more efficiently
# w.r.t. the de-padding being done above, but sigh...
if blocksize > 0 and len(s) % blocksize:
s = (blocksize - len(s) % blocksize) * '\000' + s
return s
def _bytelist2longBigEndian(list):
"Transform a list of characters into a list of longs."
imax = len(list) // 4
hl = [0] * imax
j = 0
i = 0
while i < imax:
b0 = ord(list[j]) << 24
b1 = ord(list[j+1]) << 16
b2 = ord(list[j+2]) << 8
b3 = ord(list[j+3])
hl[i] = b0 | b1 | b2 | b3
i = i+1
j = j+4
return hl
def _rotateLeft(x, n):
"Rotate x (32 bit) left n bits circularly."
return (x << n) | (x >> (32-n))
# ======================================================================
# The SHA transformation functions
#
# ======================================================================
def f0_19(B, C, D):
return (B & C) | ((~ B) & D)
def f20_39(B, C, D):
return B ^ C ^ D
def f40_59(B, C, D):
return (B & C) | (B & D) | (C & D)
def f60_79(B, C, D):
return B ^ C ^ D
f = [f0_19, f20_39, f40_59, f60_79]
# Constants to be used
K = [
0x5A827999, # ( 0 <= t <= 19)
0x6ED9EBA1, # (20 <= t <= 39)
0x8F1BBCDC, # (40 <= t <= 59)
0xCA62C1D6 # (60 <= t <= 79)
]
class sha:
"An implementation of the SHA hash function in pure Python."
digest_size = digestsize = 20
block_size = 512 // 8
def __init__(self):
"Initialisation."
# Initial message length in bits(!).
self.length = 0
self.count = [0, 0]
# Initial empty message as a sequence of bytes (8 bit characters).
self.input = []
# Call a separate init function, that can be used repeatedly
# to start from scratch on the same object.
self.init()
def init(self):
"Initialize the message-digest and set all fields to zero."
self.length = 0
self.input = []
# Initial 160 bit message digest (5 times 32 bit).
self.H0 = 0x67452301
self.H1 = 0xEFCDAB89
self.H2 = 0x98BADCFE
self.H3 = 0x10325476
self.H4 = 0xC3D2E1F0
def _transform(self, W):
for t in range(16, 80):
W.append(_rotateLeft(
W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1) & 0xffffffff)
A = self.H0
B = self.H1
C = self.H2
D = self.H3
E = self.H4
"""
This loop was unrolled to gain about 10% in speed
for t in range(0, 80):
TEMP = _rotateLeft(A, 5) + f[t/20] + E + W[t] + K[t/20]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
"""
for t in range(0, 20):
TEMP = _rotateLeft(A, 5) + ((B & C) | ((~ B) & D)) + E + W[t] + K[0]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
for t in range(20, 40):
TEMP = _rotateLeft(A, 5) + (B ^ C ^ D) + E + W[t] + K[1]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
for t in range(40, 60):
TEMP = _rotateLeft(A, 5) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
for t in range(60, 80):
TEMP = _rotateLeft(A, 5) + (B ^ C ^ D) + E + W[t] + K[3]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
self.H0 = (self.H0 + A) & 0xffffffff
self.H1 = (self.H1 + B) & 0xffffffff
self.H2 = (self.H2 + C) & 0xffffffff
self.H3 = (self.H3 + D) & 0xffffffff
self.H4 = (self.H4 + E) & 0xffffffff
# Down from here all methods follow the Python Standard Library
# API of the sha module.
def update(self, inBuf):
"""Add to the current message.
Update the md5 object with the string arg. Repeated calls
are equivalent to a single call with the concatenation of all
the arguments, i.e. m.update(a); m.update(b) is equivalent
to m.update(a+b).
The hash is immediately calculated for all full blocks. The final
calculation is made in digest(). It will calculate 1-2 blocks,
depending on how much padding we have to add. This allows us to
keep an intermediate value for the hash, so that we only need to
make minimal recalculation if we call update() to add more data
to the hashed string.
"""
leninBuf = len(inBuf)
# Compute number of bytes mod 64.
index = (self.count[1] >> 3) & 0x3F
# Update number of bits.
self.count[1] = self.count[1] + (leninBuf << 3)
if self.count[1] < (leninBuf << 3):
self.count[0] = self.count[0] + 1
self.count[0] = self.count[0] + (leninBuf >> 29)
partLen = 64 - index
if leninBuf >= partLen:
self.input[index:] = list(inBuf[:partLen])
self._transform(_bytelist2longBigEndian(self.input))
i = partLen
while i + 63 < leninBuf:
self._transform(_bytelist2longBigEndian(list(inBuf[i:i+64])))
i = i + 64
else:
self.input = list(inBuf[i:leninBuf])
else:
i = 0
self.input = self.input + list(inBuf)
def digest(self):
"""Terminate the message-digest computation and return digest.
Return the digest of the strings passed to the update()
method so far. This is a 16-byte string which may contain
non-ASCII characters, including null bytes.
"""
H0 = self.H0
H1 = self.H1
H2 = self.H2
H3 = self.H3
H4 = self.H4
input = [] + self.input
count = [] + self.count
index = (self.count[1] >> 3) & 0x3f
if index < 56:
padLen = 56 - index
else:
padLen = 120 - index
padding = ['\200'] + ['\000'] * 63
self.update(padding[:padLen])
# Append length (before padding).
bits = _bytelist2longBigEndian(self.input[:56]) + count
self._transform(bits)
# Store state in digest.
digest = _long2bytesBigEndian(self.H0, 4) + \
_long2bytesBigEndian(self.H1, 4) + \
_long2bytesBigEndian(self.H2, 4) + \
_long2bytesBigEndian(self.H3, 4) + \
_long2bytesBigEndian(self.H4, 4)
self.H0 = H0
self.H1 = H1
self.H2 = H2
self.H3 = H3
self.H4 = H4
self.input = input
self.count = count
return digest
def hexdigest(self):
"""Terminate and return digest in HEX form.
Like digest() except the digest is returned as a string of
length 32, containing only hexadecimal digits. This may be
used to exchange the value safely in email or other non-
binary environments.
"""
return ''.join(['%02x' % ord(c) for c in self.digest()])
def copy(self):
"""Return a clone object.
Return a copy ('clone') of the md5 object. This can be used
to efficiently compute the digests of strings that share
a common initial substring.
"""
return copy.deepcopy(self)
# ======================================================================
# Mimic Python top-level functions from standard library API
# for consistency with the _sha module of the standard library.
# ======================================================================
# These are mandatory variables in the module. They have constant values
# in the SHA standard.
digest_size = 20
digestsize = 20
blocksize = 1
def new(arg=None):
"""Return a new sha crypto object.
If arg is present, the method call update(arg) is made.
"""
crypto = sha()
if arg:
crypto.update(arg)
return crypto
|