1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
# Copyright 1999-2006 Gentoo Foundation
# Distributed under the terms of the GNU General Public License v2
# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.65 2007/02/12 05:01:09 vapier Exp $
#
# Author: Toolchain Ninjas <toolchain@gentoo.org>
#
# This eclass contains (or should) functions to get common info
# about the toolchain (libc/compiler/binutils/etc...)
inherit multilib
DESCRIPTION="Based on the ${ECLASS} eclass"
tc-getPROG() {
local var=$1
local prog=$2
if [[ -n ${!var} ]] ; then
echo "${!var}"
return 0
fi
local search=
[[ -n $3 ]] && search=$(type -p "$3-${prog}")
[[ -z ${search} && -n ${CHOST} ]] && search=$(type -p "${CHOST}-${prog}")
[[ -n ${search} ]] && prog=${search##*/}
export ${var}=${prog}
echo "${!var}"
}
# Returns the name of the archiver
tc-getAR() { tc-getPROG AR ar "$@"; }
# Returns the name of the assembler
tc-getAS() { tc-getPROG AS as "$@"; }
# Returns the name of the C compiler
tc-getCC() { tc-getPROG CC gcc "$@"; }
# Returns the name of the C preprocessor
tc-getCPP() { tc-getPROG CPP cpp "$@"; }
# Returns the name of the C++ compiler
tc-getCXX() { tc-getPROG CXX g++ "$@"; }
# Returns the name of the linker
tc-getLD() { tc-getPROG LD ld "$@"; }
# Returns the name of the strip prog
tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
# Returns the name of the symbol/object thingy
tc-getNM() { tc-getPROG NM nm "$@"; }
# Returns the name of the archiver indexer
tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
# Returns the name of the fortran 77 compiler
tc-getF77() { tc-getPROG F77 f77 "$@"; }
# Returns the name of the fortran 90 compiler
tc-getF90() { tc-getPROG F90 gfortran "$@"; }
# Returns the name of the fortran compiler
tc-getFORTRAN() { tc-getPROG FORTRAN gfortran "$@"; }
# Returns the name of the java compiler
tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
# Returns the name of the C compiler for build
tc-getBUILD_CC() {
local v
for v in CC_FOR_BUILD BUILD_CC HOSTCC ; do
if [[ -n ${!v} ]] ; then
export BUILD_CC=${!v}
echo "${!v}"
return 0
fi
done
local search=
if [[ -n ${CBUILD} ]] ; then
search=$(type -p ${CBUILD}-gcc)
search=${search##*/}
fi
search=${search:-gcc}
export BUILD_CC=${search}
echo "${search}"
}
# Quick way to export a bunch of vars at once
tc-export() {
local var
for var in "$@" ; do
eval tc-get${var} > /dev/null
done
}
# A simple way to see if we're using a cross-compiler ...
tc-is-cross-compiler() {
return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
}
# See if this toolchain is a softfloat based one.
# The possible return values:
# - only: the target is always softfloat (never had fpu)
# - yes: the target should support softfloat
# - no: the target should support hardfloat
# This allows us to react differently where packages accept
# softfloat flags in the case where support is optional, but
# rejects softfloat flags where the target always lacks an fpu.
tc-is-softfloat() {
case ${CTARGET} in
h8300*)
echo "only" ;;
*)
[[ ${CTARGET//_/-} == *-softfloat-* ]] \
&& echo "yes" \
|| echo "no"
;;
esac
}
# Parse information from CBUILD/CHOST/CTARGET rather than
# use external variables from the profile.
tc-ninja_magic_to_arch() {
ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
local type=$1
local host=$2
[[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
case ${host} in
alpha*) echo alpha;;
arm*) echo arm;;
bfin*) ninj blackfin bfin;;
cris*) echo cris;;
hppa*) ninj parisc hppa;;
i?86*) ninj i386 x86;;
ia64*) echo ia64;;
m68*) echo m68k;;
mips*) echo mips;;
nios2*) echo nios2;;
nios*) echo nios;;
powerpc*)
# Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
# have been unified into simply 'powerpc', but until 2.6.16,
# ppc32 is still using ARCH="ppc" as default
if [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] && [[ ${type} == "kern" ]] ; then
echo powerpc
elif [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] && [[ ${type} == "kern" ]] ; then
if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
echo powerpc
else
echo ppc
fi
elif [[ ${host} == powerpc64* ]] ; then
echo ppc64
elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
ninj ppc64 ppc
else
echo ppc
fi
;;
s390*) echo s390;;
sh64*) ninj sh64 sh;;
sh*) echo sh;;
sparc64*) ninj sparc64 sparc;;
sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
&& ninj sparc64 sparc \
|| echo sparc
;;
vax*) echo vax;;
x86_64*) ninj x86_64 amd64;;
*) echo ${ARCH};;
esac
}
tc-arch-kernel() {
tc-ninja_magic_to_arch kern $@
}
tc-arch() {
tc-ninja_magic_to_arch portage $@
}
# Returns the version number, n.m...
ld-fullversion() {
$(tc-getLD "$@") -v | grep version | sed -e 's/^.*version //'
}
# Returns the <major>.<minor> version
ld-version() {
ld-fullversion "$@" | cut -f1,2 -d.
}
# Returns the version as by `$CC -dumpversion`
gcc-fullversion() {
$(tc-getCC "$@") -dumpversion
}
# Returns the version, but only the <major>.<minor>
gcc-version() {
gcc-fullversion "$@" | cut -f1,2 -d.
}
# Returns the Major version
gcc-major-version() {
gcc-version "$@" | cut -f1 -d.
}
# Returns the Minor version
gcc-minor-version() {
gcc-version "$@" | cut -f2 -d.
}
# Returns the Micro version
gcc-micro-version() {
gcc-fullversion "$@" | cut -f3 -d. | cut -f1 -d-
}
# Returns the installation directory
gcc-install-dir() {
echo "$($(tc-getCC) -print-search-dirs 2> /dev/null |\
awk '$1=="install:" {print $2}')"
}
# Returns true if the indicated specs file exists
gcc-specs-exists() {
[[ -f $(gcc-install-dir)/$1 ]]
}
# Returns requested gcc specs directive
# Note; later specs normally overwrite earlier ones; however if a later
# spec starts with '+' then it appends.
# gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
# as "Reading <file>", in order. Strictly speaking, if there's a
# $(gcc_install_dir)/specs, the built-in specs aren't read, however by
# the same token anything from 'gcc -dumpspecs' is overridden by
# the contents of $(gcc_install_dir)/specs so the result is the
# same either way.
gcc-specs-directive_raw() {
local cc=$(tc-getCC)
local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
'BEGIN { pspec=""; spec=""; outside=1 }
$1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
{ spec=spec $0 }
END { print spec }'
return 0
}
# Return the requested gcc specs directive, with all included
# specs expanded.
# Note, it does not check for inclusion loops, which cause it
# to never finish - but such loops are invalid for gcc and we're
# assuming gcc is operational.
gcc-specs-directive() {
local directive subdname subdirective
directive="$(gcc-specs-directive_raw $1)"
while [[ ${directive} == *%\(*\)* ]]; do
subdname=${directive/*%\(}
subdname=${subdname/\)*}
subdirective="$(gcc-specs-directive_raw ${subdname})"
directive="${directive//\%(${subdname})/${subdirective}}"
done
echo "${directive}"
return 0
}
# Returns true if the toolchain sets relro
gcc-specs-relro() {
local directive
directive=$(gcc-specs-directive link_command)
return $([[ ${directive/\{!norelro:} != ${directive} ]])
}
# Returns true if the toolchain sets now
gcc-specs-now() {
local directive
directive=$(gcc-specs-directive link_command)
return $([[ ${directive/\{!nonow:} != ${directive} ]])
}
# Returns true if gcc builds PIEs
gcc-specs-pie() {
local directive
directive=$(gcc-specs-directive cc1)
return $([[ ${directive/\{!nopie:} != ${directive} ]])
}
# Returns true if gcc builds with the stack protector
gcc-specs-ssp() {
local directive
directive=$(gcc-specs-directive cc1)
return $([[ ${directive/\{!fno-stack-protector:} != ${directive} ]])
}
# Returns true if gcc upgrades fstack-protector to fstack-protector-all
gcc-specs-ssp-to-all() {
local directive
gcc-specs-ssp || return 1
directive=$(gcc-specs-directive cc1)
return $([[ ${directive/\{!fno-stack-protector-all:} != ${directive} ]])
}
# This function generate linker scripts in /usr/lib for dynamic
# libs in /lib. This is to fix linking problems when you have
# the .so in /lib, and the .a in /usr/lib. What happens is that
# in some cases when linking dynamic, the .a in /usr/lib is used
# instead of the .so in /lib due to gcc/libtool tweaking ld's
# library search path. This cause many builds to fail.
# See bug #4411 for more info.
#
# To use, simply call:
#
# gen_usr_ldscript libfoo.so
#
# Note that you should in general use the unversioned name of
# the library, as ldconfig should usually update it correctly
# to point to the latest version of the library present.
_tc_gen_usr_ldscript() {
local lib libdir=$(get_libdir) output_format=""
# Just make sure it exists
dodir /usr/${libdir}
# OUTPUT_FORMAT gives hints to the linker as to what binary format
# is referenced ... makes multilib saner
output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
[[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
for lib in "$@" ; do
if [[ ${USERLAND} == "Darwin" ]] ; then
ewarn "Not creating fake dynamic library for $lib on Darwin;"
ewarn "making a symlink instead."
dosym "/${libdir}/${lib}" "/usr/${libdir}/${lib}"
else
cat > "${D}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
/* GNU ld script
Since Gentoo has critical dynamic libraries
in /lib, and the static versions in /usr/lib,
we need to have a "fake" dynamic lib in /usr/lib,
otherwise we run into linking problems.
See bug http://bugs.gentoo.org/4411 for more info.
*/
${output_format}
GROUP ( /${libdir}/${lib} )
END_LDSCRIPT
fi
fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
done
}
gen_usr_ldscript() { _tc_gen_usr_ldscript "$@" ; }
# Much assembly code is written conditional on preprocessor macro
# PIC, which is a libtool convention and not something the toolchain
# itself sets. GCC has set __PIC__ for the longest time when buildling
# position-independent code (either -fPIC or -fPIE), so using __PIC__
# is reliable. The hardened compiler switches on PIE by default, so
# any code for applications that has position-independent versions
# enabled via -DPIC don't get triggered when building -fPIE, even
# though it would be necessary.
# One easy option would be to have the compiler define PIC when
# building -fPIE - however it would break code that contains PIC as
# a word anywhere in it's source. A purer solution is to modify
# preprocessor conditionals to accept __PIC__ in addition to PIC.
# This function is provided to perform such modifications, to avoid
# duplicating complex modifications throughout the tree.
#
# Syntax:
# fixup_DPIC [-style edit|prepend] <directory> <filename match>
#
# Default is to try all files recursively from ${S}
#
# With -style prepend, it prepends the following:
# #if (defined __PIC__ && !defined PIC)
# # define PIC
# #endif
# to the top of any source file containing /#[[:space:]]*if.*PIC/
#
# With -style edit, replaces:
# #ifdef PIC -> #if defined PIC || defined __PIC__
# #ifndef PIC -> #if !defined PIC && !defined __PIC__
# #if ... defined PIC ... -> #if ... (defined PIC || defined __PIC__) ...
# #if ... !defined PIC ... -> #if ... (!defined PIC && !defined __PIC__) ...
#
# -prepend is the default.
fixup_DPIC() {
local style="prepend"
while [[ ${1:0:1} == "-" ]]; do
case ${1} in
"-style") shift; [[ -z $1 ]] && die "fixup_PIC syntax error"; style=${1} ;;
*) die "Unknown fixup_DPIC option ${1}"
esac
shift
done
local sourceroot="$1"
local findmatch="$2"
local findop="-name"
[[ -z ${sourceroot} ]] && sourceroot="${S}"
[[ -z ${findmatch} ]] && findop=""
case ${style} in
"prepend")
einfo "Prepending PIC fixup"
find "${sourceroot}" ${findop} "${findmatch}" | \
xargs grep -l '^[[:space:]]*#[[:space:]]*if.*\bPIC\b' | \
xargs sed -i -e '1i#if defined __PIC__ && !defined PIC\
# define PIC\
#endif\
'
;;
"edit") # this path untested
find "${sourceroot}" ${findop} "${findmatch}" | \
xargs grep -l '^[[:space:]]*#[[:space:]]*if.*\bPIC\b' | \
xargs sed -s -i -n \
-e 's/\(#[[:space:]]+\)ifdef[[:space:]]+PIC\b/\1if (defined PIC || defined __PIC__)/' \
-e 's/\(#[[:space:]]+\)ifndef[[:space:]]+PIC\b/\1if (!defined PIC && !defined __PIC__)/' \
-e 's/\(#[[:space:]]+if[[:space:]]+.*\)defined[[:space:]]+PIC\b\(.*$\)/\1(defined PIC || defined __PIC__)/' \
-e 's/\(#[[:space:]]+if[[:space:]]+.*\)![[:space:]]*defined[[:space:]]+PIC\b/\1(!defined PIC && !defined __PIC__)/'
;;
*)
die "Unknown DPIC fixup style ${style}"
;;
esac
}
|