summaryrefslogtreecommitdiff
blob: 09e817ce1dcc9b9e10b1d78c37626903365a04ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2013 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"

// Tone curves are powerful constructs that can contain curves specified in diverse ways.
// The curve is stored in segments, where each segment can be sampled or specified by parameters.
// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
// the plug-in should provide the type id, how many parameters each type has, and a pointer to
// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
// be called with the type id as a negative value, and a sampled version of the reversed curve
// will be built.

// ----------------------------------------------------------------- Implementation
// Maxim number of nodes
#define MAX_NODES_IN_CURVE   4097
#define MINUS_INF            (-1E22F)
#define PLUS_INF             (+1E22F)

// The list of supported parametric curves
typedef struct _cmsParametricCurvesCollection_st {

    cmsUInt32Number nFunctions;                                     // Number of supported functions in this chunk
    cmsInt32Number  FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN];        // The identification types
    cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN];       // Number of parameters for each function

    cmsParametricCurveEvaluator Evaluator;                          // The evaluator

    struct _cmsParametricCurvesCollection_st* Next; // Next in list

} _cmsParametricCurvesCollection;

// This is the default (built-in) evaluator
static cmsFloat64Number DefaultEvalParametricFn(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);

// The built-in list
static _cmsParametricCurvesCollection DefaultCurves = {
    9,                                  // # of curve types
    { 1, 2, 3, 4, 5, 6, 7, 8, 108 },    // Parametric curve ID
    { 1, 3, 4, 5, 7, 4, 5, 5, 1 },      // Parameters by type
    DefaultEvalParametricFn,            // Evaluator
    NULL                                // Next in chain
};

// Duplicates the zone of memory used by the plug-in in the new context
static
void DupPluginCurvesList(struct _cmsContext_struct* ctx,
                                               const struct _cmsContext_struct* src)
{
   _cmsCurvesPluginChunkType newHead = { NULL };
   _cmsParametricCurvesCollection*  entry;
   _cmsParametricCurvesCollection*  Anterior = NULL;
   _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];

    _cmsAssert(head != NULL);

    // Walk the list copying all nodes
   for (entry = head->ParametricCurves;
        entry != NULL;
        entry = entry ->Next) {

            _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));

            if (newEntry == NULL)
                return;

            // We want to keep the linked list order, so this is a little bit tricky
            newEntry -> Next = NULL;
            if (Anterior)
                Anterior -> Next = newEntry;

            Anterior = newEntry;

            if (newHead.ParametricCurves == NULL)
                newHead.ParametricCurves = newEntry;
    }

  ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
}

// The allocator have to follow the chain
void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx,
                                const struct _cmsContext_struct* src)
{
    _cmsAssert(ctx != NULL);

    if (src != NULL) {

        // Copy all linked list
       DupPluginCurvesList(ctx, src);
    }
    else {
        static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
        ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
    }
}


// The linked list head
_cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };

// As a way to install new parametric curves
cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
{
    _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
    cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
    _cmsParametricCurvesCollection* fl;

    if (Data == NULL) {

          ctx -> ParametricCurves =  NULL;
          return TRUE;
    }

    fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
    if (fl == NULL) return FALSE;

    // Copy the parameters
    fl ->Evaluator  = Plugin ->Evaluator;
    fl ->nFunctions = Plugin ->nFunctions;

    // Make sure no mem overwrites
    if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
        fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;

    // Copy the data
    memmove(fl->FunctionTypes,  Plugin ->FunctionTypes,   fl->nFunctions * sizeof(cmsUInt32Number));
    memmove(fl->ParameterCount, Plugin ->ParameterCount,  fl->nFunctions * sizeof(cmsUInt32Number));

    // Keep linked list
    fl ->Next = ctx->ParametricCurves;
    ctx->ParametricCurves = fl;

    // All is ok
    return TRUE;
}


// Search in type list, return position or -1 if not found
static
int IsInSet(int Type, _cmsParametricCurvesCollection* c)
{
    int i;

    for (i=0; i < (int) c ->nFunctions; i++)
        if (abs(Type) == c ->FunctionTypes[i]) return i;

    return -1;
}


// Search for the collection which contains a specific type
static
_cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
{
    _cmsParametricCurvesCollection* c;
    int Position;
    _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);

    for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {

        Position = IsInSet(Type, c);

        if (Position != -1) {
            if (index != NULL)
                *index = Position;
            return c;
        }
    }
    // If none found, revert for defaults
    for (c = &DefaultCurves; c != NULL; c = c ->Next) {

        Position = IsInSet(Type, c);

        if (Position != -1) {
            if (index != NULL)
                *index = Position;
            return c;
        }
    }

    return NULL;
}

// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
// no optimation curve is computed. nSegments may also be zero in the inverse case, where only the
// optimization curve is given. Both features simultaneously is an error
static
cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries,
                                      cmsUInt32Number nSegments, const cmsCurveSegment* Segments,
                                      const cmsUInt16Number* Values)
{
    cmsToneCurve* p;
    cmsUInt32Number i;

    // We allow huge tables, which are then restricted for smoothing operations
    if (nEntries > 65530) {
        cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
        return NULL;
    }

    if (nEntries == 0 && nSegments == 0) {
        cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
        return NULL;
    }

    // Allocate all required pointers, etc.
    p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
    if (!p) return NULL;

    // In this case, there are no segments
    if (nSegments == 0) {
        p ->Segments = NULL;
        p ->Evals = NULL;
    }
    else {
        p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
        if (p ->Segments == NULL) goto Error;

        p ->Evals    = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
        if (p ->Evals == NULL) goto Error;
    }

    p -> nSegments = nSegments;

    // This 16-bit table contains a limited precision representation of the whole curve and is kept for
    // increasing xput on certain operations.
    if (nEntries == 0) {
        p ->Table16 = NULL;
    }
    else {
       p ->Table16 = (cmsUInt16Number*)  _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
       if (p ->Table16 == NULL) goto Error;
    }

    p -> nEntries  = nEntries;

    // Initialize members if requested
    if (Values != NULL && (nEntries > 0)) {

        for (i=0; i < nEntries; i++)
            p ->Table16[i] = Values[i];
    }

    // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
    // is placed in advance to maximize performance.
    if (Segments != NULL && (nSegments > 0)) {

        _cmsParametricCurvesCollection *c;

        p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
        if (p ->SegInterp == NULL) goto Error;

        for (i=0; i < nSegments; i++) {

            // Type 0 is a special marker for table-based curves
            if (Segments[i].Type == 0)
                p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);

            memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));

            if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
                p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
            else
                p ->Segments[i].SampledPoints = NULL;


            c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
            if (c != NULL)
                    p ->Evals[i] = c ->Evaluator;
        }
    }

    p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
    if (p->InterpParams != NULL)
        return p;

Error:
    if (p->SegInterp) _cmsFree(ContextID, p->SegInterp);
    if (p -> Segments) _cmsFree(ContextID, p ->Segments);
    if (p -> Evals) _cmsFree(ContextID, p -> Evals);
    if (p ->Table16) _cmsFree(ContextID, p ->Table16);
    _cmsFree(ContextID, p);
    return NULL;
}


// Parametric Fn using floating point
static
cmsFloat64Number DefaultEvalParametricFn(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
{
    cmsFloat64Number e, Val, disc;
    cmsUNUSED_PARAMETER(ContextID);

    switch (Type) {

   // X = Y ^ Gamma
    case 1:
        if (R < 0) {

            if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
                Val = R;
            else
                Val = 0;
        }
        else
            Val = pow(R, Params[0]);
        break;

    // Type 1 Reversed: X = Y ^1/gamma
    case -1:
        if (R < 0) {

            if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
                Val = R;
            else
                Val = 0;
        }
        else
        {
            if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
                Val = PLUS_INF;
            else
                Val = pow(R, 1 / Params[0]);
        }
        break;

    // CIE 122-1966
    // Y = (aX + b)^Gamma  | X >= -b/a
    // Y = 0               | else
    case 2:
    {

        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            disc = -Params[2] / Params[1];

            if (R >= disc) {

                e = Params[1] * R + Params[2];

                if (e > 0)
                    Val = pow(e, Params[0]);
                else
                    Val = 0;
            }
            else
                Val = 0;
        }
    }
    break;

     // Type 2 Reversed
     // X = (Y ^1/g  - b) / a
     case -2:
     {
         if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
             fabs(Params[1]) < MATRIX_DET_TOLERANCE)
         {
             Val = 0;
         }
         else
         {
             if (R < 0)
                 Val = 0;
             else
                 Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];

             if (Val < 0)
                 Val = 0;
         }
     }
     break;


    // IEC 61966-3
    // Y = (aX + b)^Gamma | X <= -b/a
    // Y = c              | else
    case 3:
    {
        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            disc = -Params[2] / Params[1];
            if (disc < 0)
                disc = 0;

            if (R >= disc) {

                e = Params[1] * R + Params[2];

                if (e > 0)
                    Val = pow(e, Params[0]) + Params[3];
                else
                    Val = 0;
            }
            else
                Val = Params[3];
        }
    }
    break;


    // Type 3 reversed
    // X=((Y-c)^1/g - b)/a      | (Y>=c)
    // X=-b/a                   | (Y<c)
    case -3:
    {
        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            if (R >= Params[3]) {

                e = R - Params[3];

                if (e > 0)
                    Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1];
                else
                    Val = 0;
            }
            else {
                Val = -Params[2] / Params[1];
            }
        }
    }
    break;


    // IEC 61966-2.1 (sRGB)
    // Y = (aX + b)^Gamma | X >= d
    // Y = cX             | X < d
    case 4:
        if (R >= Params[4]) {

            e = Params[1]*R + Params[2];

            if (e > 0)
                Val = pow(e, Params[0]);
            else
                Val = 0;
        }
        else
            Val = R * Params[3];
        break;

    // Type 4 reversed
    // X=((Y^1/g-b)/a)    | Y >= (ad+b)^g
    // X=Y/c              | Y< (ad+b)^g
    case -4:
    {
        if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
            fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
            fabs(Params[3]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            e = Params[1] * Params[4] + Params[2];
            if (e < 0)
                disc = 0;
            else
                disc = pow(e, Params[0]);

            if (R >= disc) {

                Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
            }
            else {
                Val = R / Params[3];
            }
        }
    }
    break;


    // Y = (aX + b)^Gamma + e | X >= d
    // Y = cX + f             | X < d
    case 5:
        if (R >= Params[4]) {

            e = Params[1]*R + Params[2];

            if (e > 0)
                Val = pow(e, Params[0]) + Params[5];
            else
                Val = Params[5];
        }
        else
            Val = R*Params[3] + Params[6];
        break;


    // Reversed type 5
    // X=((Y-e)1/g-b)/a   | Y >=(ad+b)^g+e), cd+f
    // X=(Y-f)/c          | else
    case -5:
    {
        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
            fabs(Params[3]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            disc = Params[3] * Params[4] + Params[6];
            if (R >= disc) {

                e = R - Params[5];
                if (e < 0)
                    Val = 0;
                else
                    Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
            }
            else {
                Val = (R - Params[6]) / Params[3];
            }
        }
    }
    break;


    // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
    // Type 6 is basically identical to type 5 without d

    // Y = (a * X + b) ^ Gamma + c
    case 6:
        e = Params[1]*R + Params[2];

        if (e < 0)
            Val = Params[3];
        else
            Val = pow(e, Params[0]) + Params[3];
        break;

    // ((Y - c) ^1/Gamma - b) / a
    case -6:
    {
        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            e = R - Params[3];
            if (e < 0)
                Val = 0;
            else
                Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
        }
    }
    break;


    // Y = a * log (b * X^Gamma + c) + d
    case 7:

       e = Params[2] * pow(R, Params[0]) + Params[3];
       if (e <= 0)
           Val = Params[4];
       else
           Val = Params[1]*log10(e) + Params[4];
       break;

    // (Y - d) / a = log(b * X ^Gamma + c)
    // pow(10, (Y-d) / a) = b * X ^Gamma + c
    // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
    case -7:
    {
        if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
            fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
            fabs(Params[2]) < MATRIX_DET_TOLERANCE)
        {
            Val = 0;
        }
        else
        {
            Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
        }
    }
    break;


   //Y = a * b^(c*X+d) + e
   case 8:
       Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
       break;


   // Y = (log((y-e) / a) / log(b) - d ) / c
   // a=0, b=1, c=2, d=3, e=4,
   case -8:

       disc = R - Params[4];
       if (disc < 0) Val = 0;
       else
       {
           if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
               fabs(Params[2]) < MATRIX_DET_TOLERANCE)
           {
               Val = 0;
           }
           else
           {
               Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
           }
       }
       break;

   // S-Shaped: (1 - (1-x)^1/g)^1/g
   case 108:
       if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
           Val = 0;
       else
           Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
      break;

    // y = (1 - (1-x)^1/g)^1/g
    // y^g = (1 - (1-x)^1/g)
    // 1 - y^g = (1-x)^1/g
    // (1 - y^g)^g = 1 - x
    // 1 - (1 - y^g)^g
    case -108:
        Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
        break;

    default:
        // Unsupported parametric curve. Should never reach here
        return 0;
    }

    return Val;
}

// Evaluate a segmented function for a single value. Return -Inf if no valid segment found .
// If fn type is 0, perform an interpolation on the table
static
cmsFloat64Number EvalSegmentedFn(cmsContext ContextID, const cmsToneCurve *g, cmsFloat64Number R)
{
    int i;
    cmsFloat32Number Out32;
    cmsFloat64Number Out;

    for (i = (int) g->nSegments - 1; i >= 0; --i) {

        // Check for domain
        if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) {

            // Type == 0 means segment is sampled
            if (g->Segments[i].Type == 0) {

                cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0);

                // Setup the table (TODO: clean that)
                g->SegInterp[i]->Table = g->Segments[i].SampledPoints;

                g->SegInterp[i]->Interpolation.LerpFloat(ContextID, &R1, &Out32, g->SegInterp[i]);
                Out = (cmsFloat64Number) Out32;

            }
            else {
                Out = g->Evals[i](ContextID, g->Segments[i].Type, g->Segments[i].Params, R);
            }

            if (isinf(Out))
                return PLUS_INF;
            else
            {
                if (isinf(-Out))
                    return MINUS_INF;
            }

            return Out;
        }
    }

    return MINUS_INF;
}

// Access to estimated low-res table
cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(cmsContext ContextID, const cmsToneCurve* t)
{
    cmsUNUSED_PARAMETER(ContextID);
    _cmsAssert(t != NULL);
    return t ->nEntries;
}

const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(cmsContext ContextID, const cmsToneCurve* t)
{
    cmsUNUSED_PARAMETER(ContextID);
    _cmsAssert(t != NULL);
    return t ->Table16;
}


// Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
// floating point description empty.
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[])
{
    return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
}

static
cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma)
{
    if (fabs(Gamma - 1.0) < 0.001) return 2;
    return 4096;
}


// Create a segmented gamma, fill the table
cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
                                                   cmsUInt32Number nSegments, const cmsCurveSegment Segments[])
{
    cmsUInt32Number i;
    cmsFloat64Number R, Val;
    cmsToneCurve* g;
    cmsUInt32Number nGridPoints = 4096;

    _cmsAssert(Segments != NULL);

    // Optimizatin for identity curves.
    if (nSegments == 1 && Segments[0].Type == 1) {

        nGridPoints = EntriesByGamma(Segments[0].Params[0]);
    }

    g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
    if (g == NULL) return NULL;

    // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
    // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
    for (i = 0; i < nGridPoints; i++) {

        R   = (cmsFloat64Number) i / (nGridPoints-1);

        Val = EvalSegmentedFn(ContextID, g, R);

        // Round and saturate
        g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
    }

    return g;
}

// Use a segmented curve to store the floating point table
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
{
    cmsCurveSegment Seg[3];

    // A segmented tone curve should have function segments in the first and last positions
    // Initialize segmented curve part up to 0 to constant value = samples[0]
    Seg[0].x0 = MINUS_INF;
    Seg[0].x1 = 0;
    Seg[0].Type = 6;

    Seg[0].Params[0] = 1;
    Seg[0].Params[1] = 0;
    Seg[0].Params[2] = 0;
    Seg[0].Params[3] = values[0];
    Seg[0].Params[4] = 0;

    // From zero to 1
    Seg[1].x0 = 0;
    Seg[1].x1 = 1.0;
    Seg[1].Type = 0;

    Seg[1].nGridPoints = nEntries;
    Seg[1].SampledPoints = (cmsFloat32Number*) values;

    // Final segment is constant = lastsample
    Seg[2].x0 = 1.0;
    Seg[2].x1 = PLUS_INF;
    Seg[2].Type = 6;

    Seg[2].Params[0] = 1;
    Seg[2].Params[1] = 0;
    Seg[2].Params[2] = 0;
    Seg[2].Params[3] = values[nEntries-1];
    Seg[2].Params[4] = 0;


    return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
}

// Parametric curves
//
// Parameters goes as: Curve, a, b, c, d, e, f
// Type is the ICC type +1
// if type is negative, then the curve is analytically inverted
cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
{
    cmsCurveSegment Seg0;
    int Pos = 0;
    cmsUInt32Number size;
    _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);

    _cmsAssert(Params != NULL);

    if (c == NULL) {
        cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
        return NULL;
    }

    memset(&Seg0, 0, sizeof(Seg0));

    Seg0.x0   = MINUS_INF;
    Seg0.x1   = PLUS_INF;
    Seg0.Type = Type;

    size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
    memmove(Seg0.Params, Params, size);

    return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
}



// Build a gamma table based on gamma constant
cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
{
    return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
}


// Free all memory taken by the gamma curve
void CMSEXPORT cmsFreeToneCurve(cmsContext ContextID, cmsToneCurve* Curve)
{
    if (Curve == NULL) return;

    _cmsFreeInterpParams(ContextID, Curve ->InterpParams);

    if (Curve -> Table16)
        _cmsFree(ContextID, Curve ->Table16);

    if (Curve ->Segments) {

        cmsUInt32Number i;

        for (i=0; i < Curve ->nSegments; i++) {

            if (Curve ->Segments[i].SampledPoints) {
                _cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
            }

            if (Curve ->SegInterp[i] != 0)
                _cmsFreeInterpParams(ContextID, Curve->SegInterp[i]);
        }

        _cmsFree(ContextID, Curve ->Segments);
        _cmsFree(ContextID, Curve ->SegInterp);
    }

    if (Curve -> Evals)
        _cmsFree(ContextID, Curve -> Evals);

    if (Curve) _cmsFree(ContextID, Curve);
}

// Utility function, free 3 gamma tables
void CMSEXPORT cmsFreeToneCurveTriple(cmsContext ContextID, cmsToneCurve* Curve[3])
{

    _cmsAssert(Curve != NULL);

    if (Curve[0] != NULL) cmsFreeToneCurve(ContextID, Curve[0]);
    if (Curve[1] != NULL) cmsFreeToneCurve(ContextID, Curve[1]);
    if (Curve[2] != NULL) cmsFreeToneCurve(ContextID, Curve[2]);

    Curve[0] = Curve[1] = Curve[2] = NULL;
}


// Duplicate a gamma table
cmsToneCurve* CMSEXPORT cmsDupToneCurve(cmsContext ContextID, const cmsToneCurve* In)
{
    if (In == NULL) return NULL;

    return  AllocateToneCurveStruct(ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
}

// Joins two curves for X and Y. Curves should be monotonic.
// We want to get
//
//      y = Y^-1(X(t))
//
cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
                                      const cmsToneCurve* X,
                                      const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
{
    cmsToneCurve* out = NULL;
    cmsToneCurve* Yreversed = NULL;
    cmsFloat32Number t, x;
    cmsFloat32Number* Res = NULL;
    cmsUInt32Number i;


    _cmsAssert(X != NULL);
    _cmsAssert(Y != NULL);

    Yreversed = cmsReverseToneCurveEx(ContextID, nResultingPoints, Y);
    if (Yreversed == NULL) goto Error;

    Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
    if (Res == NULL) goto Error;

    //Iterate
    for (i=0; i <  nResultingPoints; i++) {

        t = (cmsFloat32Number) i / (nResultingPoints-1);
        x = cmsEvalToneCurveFloat(ContextID, X,  t);
        Res[i] = cmsEvalToneCurveFloat(ContextID, Yreversed, x);
    }

    // Allocate space for output
    out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);

Error:

    if (Res != NULL) _cmsFree(ContextID, Res);
    if (Yreversed != NULL) cmsFreeToneCurve(ContextID, Yreversed);

    return out;
}



// Get the surrounding nodes. This is tricky on non-monotonic tables
static
int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
{
    int i;
    int y0, y1;

    // A 1 point table is not allowed
    if (p -> Domain[0] < 1) return -1;

    // Let's see if ascending or descending.
    if (LutTable[0] < LutTable[p ->Domain[0]]) {

        // Table is overall ascending
        for (i = (int) p->Domain[0] - 1; i >= 0; --i) {

            y0 = LutTable[i];
            y1 = LutTable[i+1];

            if (y0 <= y1) { // Increasing
                if (In >= y0 && In <= y1) return i;
            }
            else
                if (y1 < y0) { // Decreasing
                    if (In >= y1 && In <= y0) return i;
                }
        }
    }
    else {
        // Table is overall descending
        for (i=0; i < (int) p -> Domain[0]; i++) {

            y0 = LutTable[i];
            y1 = LutTable[i+1];

            if (y0 <= y1) { // Increasing
                if (In >= y0 && In <= y1) return i;
            }
            else
                if (y1 < y0) { // Decreasing
                    if (In >= y1 && In <= y0) return i;
                }
        }
    }

    return -1;
}

// Reverse a gamma table
cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsContext ContextID, cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve)
{
    cmsToneCurve *out;
    cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
    int i, j;
    int Ascending;

    _cmsAssert(InCurve != NULL);

    // Try to reverse it analytically whatever possible

    if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 &&
        /* InCurve -> Segments[0].Type <= 5 */
        GetParametricCurveByType(ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {

        return cmsBuildParametricToneCurve(ContextID,
                                       -(InCurve -> Segments[0].Type),
                                       InCurve -> Segments[0].Params);
    }

    // Nope, reverse the table.
    out = cmsBuildTabulatedToneCurve16(ContextID, nResultSamples, NULL);
    if (out == NULL)
        return NULL;

    // We want to know if this is an ascending or descending table
    Ascending = !cmsIsToneCurveDescending(ContextID, InCurve);

    // Iterate across Y axis
    for (i=0; i < (int) nResultSamples; i++) {

        y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);

        // Find interval in which y is within.
        j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
        if (j >= 0) {


            // Get limits of interval
            x1 = InCurve ->Table16[j];
            x2 = InCurve ->Table16[j+1];

            y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
            y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);

            // If collapsed, then use any
            if (x1 == x2) {

                out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
                continue;

            } else {

                // Interpolate
                a = (y2 - y1) / (x2 - x1);
                b = y2 - a * x2;
            }
        }

        out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
    }


    return out;
}

// Reverse a gamma table
cmsToneCurve* CMSEXPORT cmsReverseToneCurve(cmsContext ContextID, const cmsToneCurve* InGamma)
{
    _cmsAssert(InGamma != NULL);

    return cmsReverseToneCurveEx(ContextID, 4096, InGamma);
}

// From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
// differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
//
// Smoothing and interpolation with second differences.
//
//   Input:  weights (w), data (y): vector from 1 to m.
//   Input:  smoothing parameter (lambda), length (m).
//   Output: smoothed vector (z): vector from 1 to m.

static
cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[],
                cmsFloat32Number z[], cmsFloat32Number lambda, int m)
{
    int i, i1, i2;
    cmsFloat32Number *c, *d, *e;
    cmsBool st;


    c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
    d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
    e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));

    if (c != NULL && d != NULL && e != NULL) {


    d[1] = w[1] + lambda;
    c[1] = -2 * lambda / d[1];
    e[1] = lambda /d[1];
    z[1] = w[1] * y[1];
    d[2] = w[2] + 5 * lambda - d[1] * c[1] *  c[1];
    c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
    e[2] = lambda / d[2];
    z[2] = w[2] * y[2] - c[1] * z[1];

    for (i = 3; i < m - 1; i++) {
        i1 = i - 1; i2 = i - 2;
        d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
        c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
        e[i] = lambda / d[i];
        z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
    }

    i1 = m - 2; i2 = m - 3;

    d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
    c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
    z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
    i1 = m - 1; i2 = m - 2;

    d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
    z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
    z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];

    for (i = m - 2; 1<= i; i--)
        z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];

      st = TRUE;
    }
    else st = FALSE;

    if (c != NULL) _cmsFree(ContextID, c);
    if (d != NULL) _cmsFree(ContextID, d);
    if (e != NULL) _cmsFree(ContextID, e);

    return st;
}

// Smooths a curve sampled at regular intervals.
cmsBool  CMSEXPORT cmsSmoothToneCurve(cmsContext ContextID, cmsToneCurve* Tab, cmsFloat64Number lambda)
{
    cmsBool SuccessStatus = TRUE;
    cmsFloat32Number *w, *y, *z;
    cmsUInt32Number i, nItems, Zeros, Poles;

    if (Tab != NULL && Tab->InterpParams != NULL)
    {
        if (!cmsIsToneCurveLinear(ContextID, Tab)) // Only non-linear curves need smoothing
        {
            nItems = Tab->nEntries;
            if (nItems < MAX_NODES_IN_CURVE)
            {
                // Allocate one more item than needed
                w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
                y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
                z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));

                if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure
                {
                    memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number));
                    memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number));
                    memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number));

                    for (i = 0; i < nItems; i++)
                    {
                        y[i + 1] = (cmsFloat32Number)Tab->Table16[i];
                        w[i + 1] = 1.0;
                    }

                    if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems))
                    {
                        // Do some reality - checking...

                        Zeros = Poles = 0;
                        for (i = nItems; i > 1; --i)
                        {
                            if (z[i] == 0.) Zeros++;
                            if (z[i] >= 65535.) Poles++;
                            if (z[i] < z[i - 1])
                            {
                                cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
                                SuccessStatus = FALSE;
                                break;
                            }
                        }

                        if (SuccessStatus && Zeros > (nItems / 3))
                        {
                            cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
                            SuccessStatus = FALSE;
                        }

                        if (SuccessStatus && Poles > (nItems / 3))
                        {
                            cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
                            SuccessStatus = FALSE;
                        }

                        if (SuccessStatus) // Seems ok
                        {
                            for (i = 0; i < nItems; i++)
                            {
                                // Clamp to cmsUInt16Number
                                Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]);
                            }
                        }
                    }
                    else // Could not smooth
                    {
                        cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed.");
                        SuccessStatus = FALSE;
                    }
                }
                else // One or more buffers could not be allocated
                {
                    cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory.");
                    SuccessStatus = FALSE;
                }

                if (z != NULL)
                    _cmsFree(ContextID, z);

                if (y != NULL)
                    _cmsFree(ContextID, y);

                if (w != NULL)
                    _cmsFree(ContextID, w);
            }
            else // too many items in the table
            {
                cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points.");
                SuccessStatus = FALSE;
            }
        }
    }
    else // Tab parameter or Tab->InterpParams is NULL
    {
        // Can't signal an error here since the ContextID is not known at this point
        SuccessStatus = FALSE;
    }

    return SuccessStatus;
}

// Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
// in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases.
cmsBool CMSEXPORT cmsIsToneCurveLinear(cmsContext ContextID, const cmsToneCurve* Curve)
{
    int i;
    int diff;
    cmsUNUSED_PARAMETER(ContextID);

    _cmsAssert(Curve != NULL);

    for (i=0; i < (int) Curve ->nEntries; i++) {

        diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
        if (diff > 0x0f)
            return FALSE;
    }

    return TRUE;
}

// Same, but for monotonicity
cmsBool  CMSEXPORT cmsIsToneCurveMonotonic(cmsContext ContextID, const cmsToneCurve* t)
{
    cmsUInt32Number n;
    int i, last;
    cmsBool lDescending;

    _cmsAssert(t != NULL);

    // Degenerated curves are monotonic? Ok, let's pass them
    n = t ->nEntries;
    if (n < 2) return TRUE;

    // Curve direction
    lDescending = cmsIsToneCurveDescending(ContextID, t);

    if (lDescending) {

        last = t ->Table16[0];

        for (i = 1; i < (int) n; i++) {

            if (t ->Table16[i] - last > 2) // We allow some ripple
                return FALSE;
            else
                last = t ->Table16[i];

        }
    }
    else {

        last = t ->Table16[n-1];

        for (i = (int) n - 2; i >= 0; --i) {

            if (t ->Table16[i] - last > 2)
                return FALSE;
            else
                last = t ->Table16[i];

        }
    }

    return TRUE;
}

// Same, but for descending tables
cmsBool  CMSEXPORT cmsIsToneCurveDescending(cmsContext ContextID, const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);
    cmsUNUSED_PARAMETER(ContextID);

    return t ->Table16[0] > t ->Table16[t ->nEntries-1];
}


// Another info fn: is out gamma table multisegment?
cmsBool  CMSEXPORT cmsIsToneCurveMultisegment(cmsContext ContextID, const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);
    cmsUNUSED_PARAMETER(ContextID);

    return t -> nSegments > 1;
}

cmsInt32Number  CMSEXPORT cmsGetToneCurveParametricType(cmsContext ContextID, const cmsToneCurve* t)
{
    _cmsAssert(t != NULL);
    cmsUNUSED_PARAMETER(ContextID);

    if (t -> nSegments != 1) return 0;
    return t ->Segments[0].Type;
}

// We need accuracy this time
cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(cmsContext ContextID, const cmsToneCurve* Curve, cmsFloat32Number v)
{
    _cmsAssert(Curve != NULL);

    // Check for 16 bits table. If so, this is a limited-precision tone curve
    if (Curve ->nSegments == 0) {

        cmsUInt16Number In, Out;

        In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
        Out = cmsEvalToneCurve16(ContextID, Curve, In);

        return (cmsFloat32Number) (Out / 65535.0);
    }

    return (cmsFloat32Number) EvalSegmentedFn(ContextID, Curve, v);
}

// We need xput over here
cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(cmsContext ContextID, const cmsToneCurve* Curve, cmsUInt16Number v)
{
    cmsUInt16Number out;

    _cmsAssert(Curve != NULL);

    Curve ->InterpParams ->Interpolation.Lerp16(ContextID, &v, &out, Curve ->InterpParams);
    return out;
}


// Least squares fitting.
// A mathematical procedure for finding the best-fitting curve to a given set of points by
// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
// The sum of the squares of the offsets is used instead of the offset absolute values because
// this allows the residuals to be treated as a continuous differentiable quantity.
//
// y = f(x) = x ^ g
//
// R  = (yi - (xi^g))
// R2 = (yi - (xi^g))2
// SUM R2 = SUM (yi - (xi^g))2
//
// dR2/dg = -2 SUM x^g log(x)(y - x^g)
// solving for dR2/dg = 0
//
// g = 1/n * SUM(log(y) / log(x))

cmsFloat64Number CMSEXPORT cmsEstimateGamma(cmsContext ContextID, const cmsToneCurve* t, cmsFloat64Number Precision)
{
    cmsFloat64Number gamma, sum, sum2;
    cmsFloat64Number n, x, y, Std;
    cmsUInt32Number i;

    _cmsAssert(t != NULL);

    sum = sum2 = n = 0;

    // Excluding endpoints
    for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {

        x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
        y = (cmsFloat64Number) cmsEvalToneCurveFloat(ContextID, t, (cmsFloat32Number) x);

        // Avoid 7% on lower part to prevent
        // artifacts due to linear ramps

        if (y > 0. && y < 1. && x > 0.07) {

            gamma = log(y) / log(x);
            sum  += gamma;
            sum2 += gamma * gamma;
            n++;
        }
    }

    // Take a look on SD to see if gamma isn't exponential at all
    Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));

    if (Std > Precision)
        return -1.0;

    return (sum / n);   // The mean
}