1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
|
/* Copyright (C) 2001-2019 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* PLanar Interlaced Banded device */
#include "gdevprn.h"
#include "gscdefs.h"
#include "gscspace.h" /* For pnm_begin_typed_image(..) */
#include "gxgetbit.h"
#include "gxlum.h"
#include "gxiparam.h" /* For pnm_begin_typed_image(..) */
#include "gdevmpla.h"
#include "gdevplnx.h"
#include "gdevppla.h"
#include "gdevplib.h" /* Band donor functions */
#include "gdevmem.h"
/* This file defines 5 different devices:
*
* plib 24 bit RGB (8 bits per channel)
* plibg 8 bit Grayscale
* plibm 1 bit Monochrome
* plibc 32 bit CMYK (8 bits per channel)
* plibk 4 bit CMYK (1 bit per channel)
*
* It is intended that this device will be built on top of a 'Band Donor'
* that will be responsible for allocating and pass us band buffers for us
* to fill, and to process them as it wishes on completion.
*
* If the band_donor functions are not thread safe, or modify the device, then
* the gdev_prn_bg_output_page should be changed to use gdev_prn_output_page.
*
* For debugging/QA purposes this file can be built with the following
* define enabled, and stub versions of these band donor functions will
* be included here.
*/
#define TESTING_WITH_NO_BAND_DONOR
/* Define DEBUG_PRINT to enable some debugging printfs. */
#undef DEBUG_PRINT
/* Define DEBUG_DUMP to dump the data to the output stream. */
#define DEBUG_DUMP
/* Define HT_RAW_DUMP to store the output as a raw CMYK buffer with the
data size packed into the file name. Photoshop does not handle pam
cmyk properly so we resort to this for debugging */
#define HT_RAW_DUMP
/* Define SHORTSTOP_MEMCPY_ETC to enable braindead implementations of memcpy
* and memset etc in this file. This serves to help profiling on some
* systems, though it should be noted that our implementations here are NOT
* anywhere near as efficient as typical C libraries ones. */
#undef SHORTSTOP_MEMCPY_ETC
#ifdef SHORTSTOP_MEMCPY_ETC
void *memset(void *s_, int c, size_t n)
{
byte *s = (byte *)s_;
while (n--)
*s++ = (unsigned char)c;
return s;
}
void __aebi_memset8(void *dest, size_t n, int c)
{
memset(dest, c,n);
}
void __aebi_memset4(void *dest, size_t n, int c)
{
memset(dest, c,n);
}
void __aebi_memset(void *dest, size_t n, int c)
{
memset(dest, c,n);
}
void __aebi_memclr8(void *dest, size_t n)
{
memset(dest, 0,n);
}
void __aebi_memclr4(void *dest, size_t n)
{
memset(dest, 0,n);
}
void __aebi_memclr(void *dest, size_t n)
{
memset(dest, 0,n);
}
void *memcpy(void *s_, const void *t_, size_t n)
{
byte *s = (byte *)s_;
const byte *t = (const byte *)t_;
while (n--)
*s++ = *t++;
return s;
}
void __aebi_memcpy8(void *dest, const void *src, size_t n)
{
memcpy(dest, src,n);
}
void __aebi_memcpy4(void *dest, const void *src, size_t n)
{
memcpy(dest, src,n);
}
void __aebi_memcpy(void *dest, const void *src, size_t n)
{
memcpy(dest, src,n);
}
void *memmove(void *s_, const void *t_, size_t n)
{
byte *s = (byte *)s_;
const byte *t = (const byte *)t_;
if (s < t) {
while (n--)
*s++ = *t++;
} else {
s += n;
t += n;
while (n--)
*--s = *--t;
}
return s;
}
void __aebi_memmove8(void *dest, const void *src, size_t n)
{
memmove(dest, src,n);
}
void __aebi_memcmove4(void *dest, const void *src, size_t n)
{
memmove(dest, src,n);
}
void __aebi_memmove(void *dest, const void *src, size_t n)
{
memmove(dest, src,n);
}
#endif
#ifdef TESTING_WITH_NO_BAND_DONOR
#include <malloc_.h>
static void *my_buffer;
int gs_band_donor_init(void **opaque,
gs_memory_t *mem)
{
#ifdef DEBUG_PRINT
emprintf(mem, "gs_band_donor_init\n");
#endif
*opaque = NULL;
return 0;
}
void *gs_band_donor_band_get(void *opaque,
uint uWidth,
uint uHeight,
uint uBitDepth,
uint uComponents,
uint uStride,
uint uBandHeight)
{
#ifdef DEBUG_PRINT
eprintf6("gs_band_donor_band_get[%dx%dx%dx%d (stride=%d bandHeight=%d)]\n",
uWidth, uHeight, uBitDepth, uComponents, uStride, uBandHeight);
#endif
my_buffer = (void *)malloc(uStride * uComponents * uBandHeight);
#ifdef DEBUG_PRINT
q = my_buffer;
for (y = uBandHeight; y > 0; y--) {
for (p = 0; p < uComponents; p++) {
memset(q, 0x10+p, uStride);
q += uStride;
}
}
#endif
return my_buffer;
}
int gs_band_donor_band_full(void *opaque, uint nLines)
{
#ifdef DEBUG_PRINT
eprintf1("gs_band_donor_band_full[%d]\n", nLines);
#endif
return 0;
}
int gs_band_donor_band_release(void *opaque)
{
#ifdef DEBUG_PRINT
eprintf("gs_band_donor_band_release\n");
#endif
free(my_buffer);
my_buffer = NULL;
return 0;
}
void gs_band_donor_fin(void *opaque)
{
#ifdef DEBUG_PRINT
eprintf("gs_band_donor_fin\n");
#endif
}
#endif
/* Sanit requires us to work in bands of at least 200 lines */
#define MINBANDHEIGHT 200
/* Structure for plib devices, which extend the generic printer device. */
struct gx_device_plib_s {
gx_device_common;
gx_prn_device_common;
/* Additional state for plib device */
void *opaque;
};
typedef struct gx_device_plib_s gx_device_plib;
/* ------ The device descriptors ------ */
/*
* Default X and Y resolution.
*/
#define X_DPI 600
#define Y_DPI 600
/* For all but mono, we need our own color mapping and alpha procedures. */
static dev_proc_decode_color(plib_decode_color);
static dev_proc_encode_color(plibg_encode_color);
static dev_proc_decode_color(plibg_decode_color);
static dev_proc_decode_color(plibc_decode_color);
static dev_proc_encode_color(plibc_encode_color);
static dev_proc_map_color_rgb(plibc_map_color_rgb);
static dev_proc_open_device(plib_open);
static dev_proc_close_device(plib_close);
static dev_proc_put_params(plib_put_params);
/* And of course we need our own print-page routines. */
static dev_proc_print_page(plib_print_page);
static int plib_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibm_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibg_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibc_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibk_print_page(gx_device_printer * pdev, gp_file * pstream);
/* The device procedures */
/* See gdevprn.h for the template for the following. */
#define pgpm_procs(p_color_rgb, p_encode_color, p_decode_color) {\
plib_open,\
NULL, /* get_initial_matrix */ \
NULL, /* sync output */ \
/* Since the print_page doesn't alter the device, this device can print in the background */\
gdev_prn_bg_output_page, \
plib_close,\
NULL, /* map_rgb_color */ \
p_color_rgb, /* map_color_rgb */ \
NULL, /* fill_rectangle */ \
NULL, /* tile_rectangle */ \
NULL, /* copy_mono */ \
NULL, /* copy_color */ \
NULL, /* draw_line */ \
NULL, /* get_bits */ \
gdev_prn_get_params, \
plib_put_params,\
NULL, /* map_cmyk_color */ \
NULL, /* get_xfont_procs */ \
NULL, /* get_xfont_device */ \
NULL, /* map_rgb_alpha_color */ \
gx_page_device_get_page_device, \
NULL, /* get_alpha_bits */\
NULL, /* copy_alpha */\
NULL, /* get_band */\
NULL, /* copy_rop */\
NULL, /* fill_path */\
NULL, /* stroke_path */\
NULL, /* fill_mask */\
NULL, /* fill_trapezoid */\
NULL, /* fill_parallelogram */\
NULL, /* fill_triangle */\
NULL, /* draw_thin_line */\
NULL, /* begin_image */\
NULL, /* image_data */\
NULL, /* end_image */\
NULL, /* strip_tile_rectangle */\
NULL, /* strip_copy_rop */\
NULL, /* get_clipping_box */\
NULL, /* begin_typed_image */\
NULL, /* get_bits_rectangle */\
NULL, /* map_color_rgb_alpha */\
NULL, /* create_compositor */\
NULL, /* get_hardware_params */\
NULL, /* text_begin */\
NULL, /* finish_copydevice */\
NULL, /* begin_transparency_group */\
NULL, /* end_transparency_group */\
NULL, /* begin_transparency_mask */\
NULL, /* end_transparency_mask */\
NULL, /* discard_transparency_layer */\
NULL, /* get_color_mapping_procs */\
NULL, /* get_color_comp_index */\
p_encode_color, /* encode_color */\
p_decode_color, /* decode_color */\
NULL, /* pattern_manage */\
NULL, /* fill_rectangle_hl_color */\
NULL, /* include_color_space */\
NULL, /* fill_linear_color_scanline */\
NULL, /* fill_linear_color_trapezoid */\
NULL, /* fill_linear_color_triangle */\
NULL, /* update spot */\
NULL, /* DevN params */\
NULL, /* fill page */\
NULL, /* push_transparency_state */\
NULL, /* pop_transparency_state */\
NULL, /* put_image */\
NULL /* dev_spec_op */\
}
static const gx_device_procs plibm_procs =
pgpm_procs(NULL, gdev_prn_map_rgb_color, gdev_prn_map_color_rgb);
static const gx_device_procs plibg_procs =
pgpm_procs(NULL, plibg_encode_color, plibg_decode_color);
static const gx_device_procs plib_procs =
pgpm_procs(NULL, gx_default_rgb_map_rgb_color, plib_decode_color);
static const gx_device_procs plibc_procs =
pgpm_procs(plibc_map_color_rgb, plibc_encode_color, plibc_decode_color);
static const gx_device_procs plibk_procs =
pgpm_procs(plibc_map_color_rgb, plibc_encode_color, plibc_decode_color);
/* Macro for generating device descriptors. */
/* Ideally we'd use something like:
* #define plib_prn_device(procs, dev_name, num_comp, depth, max_gray, max_rgb, print_page) \
* { prn_device_body(gx_device_plib, procs, dev_name,\
* DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, X_DPI, Y_DPI,\
* 0, 0, 0, 0,\
* num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\
* print_page)\
* }
* But that doesn't let us override the band space params. So we have to do
* it the large way.
*/
#define plib_prn_device(procs, dev_name, num_comp, depth, max_gray, max_rgb, print_page) \
{ std_device_full_body_type(gx_device_plib, &procs, dev_name, &st_device_printer,\
(int)((float)(DEFAULT_WIDTH_10THS) * (X_DPI) / 10 + 0.5),\
(int)((float)(DEFAULT_HEIGHT_10THS) * (Y_DPI) / 10 + 0.5),\
X_DPI, Y_DPI,\
num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\
(float)(0), (float)(0),\
(float)(0), (float)(0),\
(float)(0), (float)(0)\
),\
prn_device_body_rest2_(print_page, gx_default_print_page_copies, -1)}
/* The device descriptors themselves */
const gx_device_plib gs_plib_device =
plib_prn_device(plib_procs, "plib", 3, 24, 255, 255, plib_print_page);
const gx_device_plib gs_plibg_device =
plib_prn_device(plibg_procs, "plibg", 1, 8, 255, 0, plibg_print_page);
const gx_device_plib gs_plibm_device =
plib_prn_device(plibm_procs, "plibm", 1, 1, 1, 0, plibm_print_page);
const gx_device_plib gs_plibk_device =
plib_prn_device(plibk_procs, "plibk", 4, 4, 1, 1, plibk_print_page);
const gx_device_plib gs_plibc_device =
plib_prn_device(plibc_procs, "plibc", 4, 32, 255, 255, plibc_print_page);
/* ------ Initialization ------ */
/*
* We need to create custom memory buffer devices that just point into the
* bandBuffer we've got from the digicolor system.
*/
static byte *bandBufferBase = NULL;
static int bandBufferStride = 0;
#ifdef DEBUG_DUMP
static int dump_w;
static int dump_nc;
static int dump_l2bits;
static void dump_start(int w, int h, int num_comps, int log2bits,
gp_file *dump_file)
{
if ((num_comps == 3) && (log2bits == 3)) {
/* OK */
} else if ((num_comps == 1) && (log2bits == 0)) {
/* OK */
} else if ((num_comps == 1) && (log2bits == 3)) {
/* OK */
} else if ((num_comps == 4) && (log2bits == 0)) {
/* OK */
} else if ((num_comps == 4) && (log2bits == 3)) {
/* OK */
} else
return;
dump_nc = num_comps;
dump_l2bits = log2bits;
if (dump_file == NULL)
return;
if (dump_nc == 3)
gp_fprintf(dump_file, "P6 %d %d 255\n", w, h);
else if (dump_nc == 4) {
gp_fprintf(dump_file, "P7\nWIDTH %d\nHEIGHT %d\nDEPTH 4\n"
"MAXVAL 255\nTUPLTYPE CMYK\nENDHDR\n", w, h);
} else if (log2bits == 0)
gp_fprintf(dump_file, "P4 %d %d\n", w, h);
else
gp_fprintf(dump_file, "P5 %d %d 255\n", w, h);
dump_w = w;
}
static void dump_band(int y, gp_file *dump_file)
{
byte *r = bandBufferBase;
byte *g = r + bandBufferStride;
byte *b = g + bandBufferStride;
byte *k = b + bandBufferStride;
if (dump_file == NULL)
return;
if (dump_nc == 3) {
while (y--) {
int w = dump_w;
while (w--) {
gp_fputc(*r++, dump_file);
gp_fputc(*g++, dump_file);
gp_fputc(*b++, dump_file);
}
r += bandBufferStride*3-dump_w;
g += bandBufferStride*3-dump_w;
b += bandBufferStride*3-dump_w;
}
} else if (dump_nc == 4) {
if (dump_l2bits == 0) {
while (y--) {
int w = dump_w;
while (w) {
byte C = *r++;
byte M = *g++;
byte Y = *b++;
byte K = *k++;
int s;
for (s=7; s>=0; s--) {
gp_fputc(255*((C>>s)&1), dump_file);
gp_fputc(255*((M>>s)&1), dump_file);
gp_fputc(255*((Y>>s)&1), dump_file);
gp_fputc(255*((K>>s)&1), dump_file);
w--;
if (w == 0) break;
}
}
r += bandBufferStride*4-((dump_w+7)>>3);
g += bandBufferStride*4-((dump_w+7)>>3);
b += bandBufferStride*4-((dump_w+7)>>3);
k += bandBufferStride*4-((dump_w+7)>>3);
}
} else {
while (y--) {
int w = dump_w;
while (w--) {
gp_fputc(*r++, dump_file);
gp_fputc(*g++, dump_file);
gp_fputc(*b++, dump_file);
gp_fputc(*k++, dump_file);
}
r += bandBufferStride*4-dump_w;
g += bandBufferStride*4-dump_w;
b += bandBufferStride*4-dump_w;
k += bandBufferStride*4-dump_w;
}
}
} else {
if (dump_l2bits == 0) {
while (y--) {
int w = (dump_w+7)>>3;
while (w--) {
gp_fputc(*r++, dump_file);
}
r += bandBufferStride - ((dump_w+7)>>3);
}
} else {
while (y--) {
int w = dump_w;
while (w--) {
gp_fputc(*r++, dump_file);
}
r += bandBufferStride - dump_w;
}
}
}
}
#endif
int
plib_put_params(gx_device * pdev, gs_param_list * plist)
{
int ecode = 0;
int code;
gx_device_printer * const ppdev = (gx_device_printer *)pdev;
/* Assumed to be valid on entry - remember it */
int bandHeight = ppdev->space_params.band.BandHeight;
code = gdev_prn_put_params(pdev, plist);
/* Note that 0 means "default". This will encounter a future check in "open" */
if (ppdev->space_params.band.BandHeight != 0 &&
ppdev->space_params.band.BandHeight < MINBANDHEIGHT) {
emprintf2(pdev->memory, "BandHeight of %d not valid, BandHeight minimum is %d\n",
ppdev->space_params.band.BandHeight, MINBANDHEIGHT);
ecode = gs_error_rangecheck;
/* Restore to the previous (possibly default == 0) value */
ppdev->space_params.band.BandHeight = bandHeight;
}
if (ecode >= 0)
ecode = code;
return ecode;
}
/*
* Set up the scan line pointers of a memory device.
* See gxdevmem.h for the detailed specification.
* Sets or uses line_ptrs, base, raster; uses width, color_info.depth,
* num_planes, plane_depths, plane_depth.
*/
static int
set_line_ptrs(gx_device_memory * mdev, byte * base, int raster,
byte **line_ptrs, int setup_height)
{
int num_planes = mdev->color_info.num_components;
int pi;
if (num_planes) {
if (base && !mdev->plane_depth)
return_error(gs_error_rangecheck);
} else {
num_planes = 1;
}
if (line_ptrs) {
mdev->line_ptrs = line_ptrs;
for (pi = 0; pi < num_planes; ++pi) {
byte **pend = line_ptrs + setup_height;
byte *scan_line = base;
while (line_ptrs < pend) {
*line_ptrs++ = scan_line;
scan_line += raster * num_planes;
}
base += raster;
}
}
return 0;
}
static int
plib_setup_buf_device(gx_device *bdev, byte *buffer, int bytes_per_line,
byte **line_ptrs, int y, int setup_height,
int full_height)
{
gx_device_memory *mdev = (gx_device_memory *)bdev;
int code;
/* buffer is the buffer used by clist writing. We could use that as the
* page buffer, but we'd rather use the buffer given to us by the
* digicolor code. b */
if (line_ptrs == NULL) {
/* Free any existing line pointers array */
if (mdev->line_ptrs != NULL)
gs_free_object(mdev->line_pointer_memory, mdev->line_ptrs,
"mem_close");
/*
* Allocate line pointers now; free them when we close the device.
* Note that for multi-planar devices, we have to allocate using
* full_height rather than setup_height.
*/
line_ptrs = (byte **)
gs_alloc_byte_array(mdev->memory,
(mdev->is_planar ?
full_height * mdev->color_info.num_components :
setup_height),
sizeof(byte *), "setup_buf_device");
if (line_ptrs == 0)
return_error(gs_error_VMerror);
mdev->line_pointer_memory = mdev->memory;
mdev->foreign_line_pointers = false;
mdev->line_ptrs = line_ptrs;
mdev->raster = bandBufferStride * (mdev->is_planar ? mdev->color_info.num_components : 1);
}
mdev->height = full_height;
code = set_line_ptrs(mdev,
bandBufferBase + bandBufferStride*(mdev->is_planar ? mdev->color_info.num_components : 1)*y,
bandBufferStride,
line_ptrs,
setup_height);
mdev->height = setup_height;
bdev->height = setup_height; /* do here in case mdev == bdev */
return code;
}
static int
plib_get_bits_rectangle_mem(gx_device *pdev, const gs_int_rect *prect,
gs_get_bits_params_t *params, gs_int_rect **pprect)
{
gx_device_memory *mdev = (gx_device_memory *)pdev;
int x = prect->p.x, y = prect->p.y, h = prect->q.y - y;
/* First off, see if we can satisfy get_bits_rectangle with just returning
* pointers to the existing data. */
{
gs_get_bits_params_t copy_params;
byte **base = &scan_line_base(mdev, y);
int code;
copy_params.options =
GB_COLORS_NATIVE | GB_PACKING_PLANAR | GB_ALPHA_NONE |
(mdev->raster ==
bitmap_raster(mdev->width * mdev->color_info.depth) ?
GB_RASTER_STANDARD : GB_RASTER_SPECIFIED);
copy_params.raster = mdev->raster;
code = gx_get_bits_return_pointer(pdev, x, h, params,
©_params, base);
if (code >= 0)
return code;
}
return mem_get_bits_rectangle(pdev, prect, params, pprect);
}
static int
plib_create_buf_device(gx_device **pbdev, gx_device *target, int y,
const gx_render_plane_t *render_plane, gs_memory_t *mem,
gx_color_usage_t *color_usage)
{
int code = gdev_prn_create_buf_planar(pbdev, target, y, render_plane,
mem, color_usage);
if (code < 0)
return code;
if (dev_proc((*pbdev), get_bits_rectangle) == mem_get_bits_rectangle)
set_dev_proc((*pbdev), get_bits_rectangle, plib_get_bits_rectangle_mem);
return 0;
}
static int
plib_size_buf_device(gx_device_buf_space_t *space, gx_device *target,
const gx_render_plane_t *render_plane,
int height, bool for_band)
{
return gdev_prn_size_buf_planar(space, target, render_plane,
height, for_band);
}
/*
* Define a special open procedure that changes create_buf_device to use
* a planar device.
*/
static int
plib_open(gx_device * pdev)
{
gx_device_plib * const bdev = (gx_device_plib *)pdev;
gx_device_printer * const ppdev = (gx_device_printer *)pdev;
int code;
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plib_open\n");
#endif
bdev->printer_procs.buf_procs.create_buf_device = plib_create_buf_device;
bdev->printer_procs.buf_procs.setup_buf_device = plib_setup_buf_device;
bdev->printer_procs.buf_procs.size_buf_device = plib_size_buf_device;
pdev->is_planar = 1;
bdev->space_params.banding_type = BandingAlways;
/* You might expect us to call gdev_prn_open_planar rather than
* gdev_prn_open, but if we do that, it overwrites the 2 function
* pointers we've just overwritten! */
code = gdev_prn_open(pdev);
if (code < 0)
return code;
if (ppdev->space_params.band.BandHeight < MINBANDHEIGHT) {
emprintf2(pdev->memory, "BandHeight of %d not valid, BandHeight minimum is %d\n",
((gx_device_printer *)pdev)->space_params.band.BandHeight,
MINBANDHEIGHT);
return_error(gs_error_rangecheck);
}
pdev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
set_linear_color_bits_mask_shift(pdev);
/* Start the actual job. */
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "calling job_begin\n");
#endif
code = gs_band_donor_init(&bdev->opaque, pdev->memory);
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "called\n");
#endif
return code;
}
static int
plib_close(gx_device *pdev)
{
gx_device_plib *pldev = (gx_device_plib *)pdev;
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plib_close\n");
#endif
gs_band_donor_fin(pldev->opaque);
pldev->opaque = NULL;
return gdev_prn_close(pdev);
}
/* ------ Color mapping routines ------ */
/* Map an RGB color to a gray value. */
static gx_color_index
plibg_encode_color(gx_device * pdev, const gx_color_value cv[])
{ /* We round the value rather than truncating it. */
gx_color_value gray;
gx_color_value r, g, b;
r = cv[0]; g = cv[0]; b = cv[0];
gray = ((r * (ulong) lum_red_weight) +
(g * (ulong) lum_green_weight) +
(b * (ulong) lum_blue_weight) +
(lum_all_weights / 2)) / lum_all_weights
* pdev->color_info.max_gray / gx_max_color_value;
return gray;
}
/* Map a gray value back to an RGB color. */
static int
plibg_decode_color(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
gx_color_value gray =
color * gx_max_color_value / dev->color_info.max_gray;
prgb[0] = gray;
prgb[1] = gray;
prgb[2] = gray;
return 0;
}
/* Map an rgb color tuple back to an RGB color. */
static int
plib_decode_color(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
uint bitspercolor = dev->color_info.depth / 3;
uint colormask = (1 << bitspercolor) - 1;
uint max_rgb = dev->color_info.max_color;
prgb[0] = ((color >> (bitspercolor * 2)) & colormask) *
(ulong) gx_max_color_value / max_rgb;
prgb[1] = ((color >> bitspercolor) & colormask) *
(ulong) gx_max_color_value / max_rgb;
prgb[2] = (color & colormask) *
(ulong) gx_max_color_value / max_rgb;
return 0;
}
/* Map a cmyk color tuple back to CMYK colorants. */
static int
plibc_decode_color(gx_device * dev, gx_color_index color,
gx_color_value prgb[4])
{
uint bitspercolor = dev->color_info.depth / 4;
uint colormask = (1 << bitspercolor) - 1;
uint c, m, y, k;
#define cvalue(c) ((gx_color_value)((ulong)(c) * gx_max_color_value / colormask))
k = color & colormask;
color >>= bitspercolor;
y = color & colormask;
color >>= bitspercolor;
m = color & colormask;
c = color >> bitspercolor;
prgb[0] = cvalue(c);
prgb[1] = cvalue(m);
prgb[2] = cvalue(y);
prgb[3] = cvalue(k);
return 0;
}
/* Map CMYK to color. */
static gx_color_index
plibc_encode_color(gx_device * dev, const gx_color_value cv[])
{
int bpc = dev->color_info.depth / 4;
gx_color_index color;
COLROUND_VARS;
COLROUND_SETUP(bpc);
color = ((((((COLROUND_ROUND(cv[0]) << bpc) +
COLROUND_ROUND(cv[1])) << bpc) +
COLROUND_ROUND(cv[2])) << bpc) +
COLROUND_ROUND(cv[3]));
/* The bitcmyk device does this:
* return (color == gx_no_color_index ? color ^ 1 : color);
* But I don't understand why.
*/
return color;
}
/* Map a cmyk color back to an rgb tuple. */
static int
plibc_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
uint bitspercolor = dev->color_info.depth / 4;
uint colormask = (1 << bitspercolor) - 1;
uint c, m, y, k;
#define cvalue(c) ((gx_color_value)((ulong)(c) * gx_max_color_value / colormask))
k = color & colormask;
color >>= bitspercolor;
y = color & colormask;
color >>= bitspercolor;
m = color & colormask;
c = color >> bitspercolor;
k = colormask - k;
prgb[0] = cvalue((colormask - c) * k / colormask);
prgb[1] = cvalue((colormask - m) * k / colormask);
prgb[2] = cvalue((colormask - y) * k / colormask);
return 0;
}
/* ------ Internal routines ------ */
/* Print a page using a given row printing routine. */
static int
plib_print_page_loop(gx_device_printer * pdev, int log2bits, int numComps,
gp_file *pstream)
{
gx_device_plib *pldev = (gx_device_plib *)pdev;
int lnum;
int code = 0;
byte *buffer;
int stride = bitmap_raster(pdev->width * (1<<log2bits));
int bandHeight = pdev->space_params.band.BandHeight;
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Calling page_begin\n");
#endif
buffer = gs_band_donor_band_get(pldev->opaque,
pdev->width,
pdev->height,
1<<log2bits,
numComps,
stride,
bandHeight);
#ifdef DEBUG_PRINT
emprintf1(pdev->memory, "Called page_begin %x\n", buffer);
#endif
if (buffer == NULL)
return_error(gs_error_VMerror);
/* Write these into the globals here so the setup_buf_device code can
* find it later. Nasty. */
bandBufferBase = buffer;
bandBufferStride = stride;
#ifdef DEBUG_DUMP
dump_start(pdev->width, pdev->height, numComps, log2bits, pstream);
#endif
for (lnum = 0; lnum < pdev->height; lnum += bandHeight) {
gs_int_rect *unread, rect;
gs_get_bits_params_t params;
rect.p.x = 0;
rect.p.y = lnum;
rect.q.x = pdev->width;
rect.q.y = lnum+bandHeight;
if (rect.q.y > pdev->height)
rect.q.y = pdev->height;
memset(¶ms, 0, sizeof(params));
params.options = GB_ALIGN_ANY |
GB_RETURN_POINTER |
GB_OFFSET_0 |
GB_RASTER_STANDARD |
GB_PACKING_PLANAR |
GB_COLORS_NATIVE |
GB_ALPHA_NONE;
params.x_offset = 0;
code = (*dev_proc(pdev, get_bits_rectangle))((gx_device *)pdev, &rect, ¶ms,&unread);
if (code < 0)
break;
#ifdef DEBUG_DUMP
dump_band(rect.q.y-rect.p.y, pstream);
#endif
#ifdef DEBUG_PRINT
emprintf3(pdev->memory, "Calling band_full (%d->%d) of %d\n",
rect.p.y, rect.q.y, pdev->height);
#endif
gs_band_donor_band_full(pldev->opaque, rect.q.y-rect.p.y);
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Called band_full\n");
#endif
}
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Calling band_release\n");
#endif
gs_band_donor_band_release(pldev->opaque);
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Called band_release\n");
#endif
return (code < 0 ? code : 0);
}
/* ------ Individual page printing routines ------ */
/* Print a monobit page. */
static int
plibm_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibm_print_page\n");
#endif
return plib_print_page_loop(pdev, 0, 1, pstream);
}
/* Print a gray-mapped page. */
static int
plibg_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibg_print_page\n");
#endif
return plib_print_page_loop(pdev, 3, 1, pstream);
}
/* Print a color-mapped page. */
static int
plib_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibc_print_page\n");
#endif
return plib_print_page_loop(pdev, 3, 3, pstream);
}
/* Print a 1 bit CMYK page. */
static int
plibk_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibk_print_page\n");
#endif
return plib_print_page_loop(pdev, 0, 4, pstream);
}
/* Print an 8bpc CMYK page. */
static int
plibc_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibc_print_page\n");
#endif
return plib_print_page_loop(pdev, 3, 4, pstream);
}
|