1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
|
/* Copyright (C) 2001-2020 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Path copying and flattening */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxfarith.h"
#include "gxgstate.h" /* for access to line params */
#include "gzpath.h"
/* Forward declarations */
static void adjust_point_to_tangent(segment *, const segment *,
const gs_fixed_point *);
static inline int
break_line_if_long(gx_path *ppath, const segment *pseg)
{
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
fixed x, y;
if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
x = (pseg->pt.x >> 1) + (x0 >> 1);
else
x = (pseg->pt.x + x0) >> 1;
if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
y = (pseg->pt.y >> 1) + (y0 >> 1);
else
y = (pseg->pt.y + y0) >> 1;
return gx_path_add_line_notes(ppath, x, y, pseg->notes);
/* WARNING: Stringly speaking, the next half segment must get
the sn_not_first flag. We don't bother, because that flag
has no important meaning with colinear segments.
*/
}
return 0;
}
static inline int
break_gap_if_long(gx_path *ppath, const segment *pseg)
{
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
fixed x, y;
if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
x = (pseg->pt.x >> 1) + (x0 >> 1);
else
x = (pseg->pt.x + x0) >> 1;
if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
y = (pseg->pt.y >> 1) + (y0 >> 1);
else
y = (pseg->pt.y + y0) >> 1;
return gx_path_add_gap_notes(ppath, x, y, pseg->notes);
/* WARNING: Stringly speaking, the next half segment must get
the sn_not_first flag. We don't bother, because that flag
has no important meaning with colinear segments.
*/
}
return 0;
}
/* Copy a path, optionally flattening or monotonizing it. */
/* If the copy fails, free the new path. */
int
gx_path_copy_reducing(const gx_path *ppath_old, gx_path *ppath,
fixed fixed_flatness, const gs_gstate *pgs,
gx_path_copy_options options)
{
const segment *pseg;
fixed flat = fixed_flatness;
gs_fixed_point expansion;
/*
* Since we're going to be adding to the path, unshare it
* before we start.
*/
int code = gx_path_unshare(ppath);
if (code < 0)
return code;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reducing");
#endif
if (options & pco_for_stroke) {
/* Precompute the maximum expansion of the bounding box. */
double width = pgs->line_params.half_width;
expansion.x =
float2fixed((fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx)) * width) * 2;
expansion.y =
float2fixed((fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy)) * width) * 2;
} else
expansion.x = expansion.y = 0; /* Quiet gcc warning. */
pseg = (const segment *)(ppath_old->first_subpath);
while (pseg) {
switch (pseg->type) {
case s_start:
code = gx_path_add_point(ppath,
pseg->pt.x, pseg->pt.y);
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
if (fixed_flatness == max_fixed) { /* don't flatten */
if (options & pco_monotonize)
code = gx_curve_monotonize(ppath, pc);
else
code = gx_path_add_curve_notes(ppath,
pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y, pseg->notes);
} else {
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
segment_notes notes = pseg->notes;
curve_segment cseg;
int k;
if (options & pco_for_stroke) {
/*
* When flattening for stroking, the flatness
* must apply to the outside of the resulting
* stroked region. We approximate this by
* dividing the flatness by the ratio of the
* expanded bounding box to the original
* bounding box. This is crude, but pretty
* simple to calculate, and produces reasonably
* good results.
*/
fixed min01, max01, min23, max23;
fixed ex, ey, flat_x, flat_y;
#define SET_EXTENT(r, c0, c1, c2, c3)\
BEGIN\
if (c0 < c1) min01 = c0, max01 = c1;\
else min01 = c1, max01 = c0;\
if (c2 < c3) min23 = c2, max23 = c3;\
else min23 = c3, max23 = c2;\
r = max(max01, max23) - min(min01, min23);\
END
SET_EXTENT(ex, x0, pc->p1.x, pc->p2.x, pc->pt.x);
SET_EXTENT(ey, y0, pc->p1.y, pc->p2.y, pc->pt.y);
#undef SET_EXTENT
/*
* We check for the degenerate case specially
* to avoid a division by zero.
*/
if (ex == 0 || ey == 0)
if (ex != 0) {
flat = fixed_mult_quo(fixed_flatness, ex,
ex + expansion.x);
k = gx_curve_log2_samples(x0,y0,pc,flat);
} else if (ey != 0) {
flat = fixed_mult_quo(fixed_flatness, ey,
ey + expansion.y);
k = gx_curve_log2_samples(x0,y0,pc,flat);
} else
k = 0;
else {
flat_x =
fixed_mult_quo(fixed_flatness, ex,
ex + expansion.x);
flat_y =
fixed_mult_quo(fixed_flatness, ey,
ey + expansion.y);
flat = min(flat_x, flat_y);
k = gx_curve_log2_samples(x0, y0, pc, flat);
}
} else
k = gx_curve_log2_samples(x0, y0, pc, flat);
if (options & pco_accurate) {
segment *start;
segment *end;
/*
* Add an extra line, which will become
* the tangent segment.
*/
code = gx_path_add_line_notes(ppath, x0, y0,
notes);
if (code < 0)
break;
start = ppath->current_subpath->last;
notes |= sn_not_first;
cseg = *pc;
code = gx_subdivide_curve(ppath, k, &cseg, notes);
if (code < 0)
break;
/*
* Adjust the first and last segments so that
* they line up with the tangents.
*/
end = ppath->current_subpath->last;
if ((code = gx_path_add_line_notes(ppath,
ppath->position.x,
ppath->position.y,
pseg->notes | sn_not_first)) < 0)
break;
if (start->next->pt.x != pc->p1.x || start->next->pt.y != pc->p1.y)
adjust_point_to_tangent(start, start->next, &pc->p1);
else if (start->next->pt.x != pc->p2.x || start->next->pt.y != pc->p2.y)
adjust_point_to_tangent(start, start->next, &pc->p2);
else
adjust_point_to_tangent(start, start->next, &end->prev->pt);
if (end->prev->pt.x != pc->p2.x || end->prev->pt.y != pc->p2.y)
adjust_point_to_tangent(end, end->prev, &pc->p2);
else if (end->prev->pt.x != pc->p1.x || end->prev->pt.y != pc->p1.y)
adjust_point_to_tangent(end, end->prev, &pc->p1);
else
adjust_point_to_tangent(end, end->prev, &start->pt);
} else {
cseg = *pc;
code = gx_subdivide_curve(ppath, k, &cseg, notes);
}
}
break;
}
case s_line:
code = break_line_if_long(ppath, pseg);
if (code < 0)
break;
code = gx_path_add_line_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_gap:
code = break_gap_if_long(ppath, pseg);
if (code < 0)
break;
code = gx_path_add_gap_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_dash:
{
const dash_segment *pd = (const dash_segment *)pseg;
code = gx_path_add_dash_notes(ppath,
pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
break;
}
case s_line_close:
code = break_line_if_long(ppath, pseg);
if (code < 0)
break;
code = gx_path_close_subpath(ppath);
break;
default: /* can't happen */
code = gs_note_error(gs_error_unregistered);
}
if (code < 0) {
gx_path_new(ppath);
return code;
}
pseg = pseg->next;
}
if (path_last_is_moveto(ppath_old)) {
code = gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (code < 0) {
gx_path_new(ppath);
return code;
}
}
if (ppath_old->bbox_set) {
if (ppath->bbox_set) {
ppath->bbox.p.x = min(ppath_old->bbox.p.x, ppath->bbox.p.x);
ppath->bbox.p.y = min(ppath_old->bbox.p.y, ppath->bbox.p.y);
ppath->bbox.q.x = max(ppath_old->bbox.q.x, ppath->bbox.q.x);
ppath->bbox.q.y = max(ppath_old->bbox.q.y, ppath->bbox.q.y);
} else {
ppath->bbox_set = true;
ppath->bbox = ppath_old->bbox;
}
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reducing");
#endif
return 0;
}
/*
* Adjust one end of a line (the first or last line of a flattened curve)
* so it falls on the curve tangent. The closest point on the line from
* (0,0) to (C,D) to a point (U,V) -- i.e., the point on the line at which
* a perpendicular line from the point intersects it -- is given by
* T = (C*U + D*V) / (C^2 + D^2)
* (X,Y) = (C*T,D*T)
* However, any smaller value of T will also work: the one we actually
* use is 0.25 * the value we just derived. We must check that
* numerical instabilities don't lead to a negative value of T.
*/
static void
adjust_point_to_tangent(segment * pseg, const segment * next,
const gs_fixed_point * p1)
{
const fixed x0 = pseg->pt.x, y0 = pseg->pt.y;
const fixed fC = p1->x - x0, fD = p1->y - y0;
/*
* By far the commonest case is that the end of the curve is
* horizontal or vertical. Check for this specially, because
* we can handle it with far less work (and no floating point).
*/
if (fC == 0) {
/* Vertical tangent. */
const fixed DT = arith_rshift(next->pt.y - y0, 2);
if (fD == 0)
return; /* anomalous case */
if_debug1('2', "[2]adjusting vertical: DT = %g\n",
fixed2float(DT));
if ((DT ^ fD) > 0)
pseg->pt.y = DT + y0;
} else if (fD == 0) {
/* Horizontal tangent. */
const fixed CT = arith_rshift(next->pt.x - x0, 2);
if_debug1('2', "[2]adjusting horizontal: CT = %g\n",
fixed2float(CT));
if ((CT ^ fC) > 0)
pseg->pt.x = CT + x0;
} else {
/* General case. */
const double C = fC, D = fD;
double T = (C * (next->pt.x - x0) + D * (next->pt.y - y0)) /
(C * C + D * D);
if_debug3('2', "[2]adjusting: C = %g, D = %g, T = %g\n",
C, D, T);
if (T > 0) {
if (T > 1) {
/* Don't go outside the curve bounding box. */
T = 1;
}
pseg->pt.x = arith_rshift((fixed) (C * T), 2) + x0;
pseg->pt.y = arith_rshift((fixed) (D * T), 2) + y0;
}
}
}
/* ---------------- Monotonic curves ---------------- */
/* Test whether a path is free of non-monotonic curves. */
bool
gx_path__check_curves(const gx_path * ppath, gx_path_copy_options options, fixed fixed_flat)
{
const segment *pseg = (const segment *)(ppath->first_subpath);
gs_fixed_point pt0;
pt0.x = pt0.y = 0; /* Quiet gcc warning. */
while (pseg) {
switch (pseg->type) {
case s_start:
{
const subpath *psub = (const subpath *)pseg;
/* Skip subpaths without curves. */
if (!psub->curve_count)
pseg = psub->last;
}
break;
case s_line:
case s_gap:
if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
return false;
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
if (options & pco_monotonize) {
double t[2];
int nz = gx_curve_monotonic_points(pt0.y,
pc->p1.y, pc->p2.y, pc->pt.y, t);
if (nz != 0)
return false;
nz = gx_curve_monotonic_points(pt0.x,
pc->p1.x, pc->p2.x, pc->pt.x, t);
if (nz != 0)
return false;
}
if (options & pco_small_curves) {
fixed ax, bx, cx, ay, by, cy;
int k = gx_curve_log2_samples(pt0.x, pt0.y, pc, fixed_flat);
if(!curve_coeffs_ranged(pt0.x, pc->p1.x, pc->p2.x, pc->pt.x,
pt0.y, pc->p1.y, pc->p2.y, pc->pt.y,
&ax, &bx, &cx, &ay, &by, &cy, k))
return false;
if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
return false;
}
}
break;
default:
;
}
pt0 = pseg->pt;
pseg = pseg->next;
}
return true;
}
/* Test whether a path is free of long segments. */
/* WARNING : This function checks the distance between
* the starting point and the ending point of a segment.
* When they are not too far, a curve nevertheless may be too long.
* Don't worry about it here, because we assume
* this function is never called with paths which have curves.
*/
bool
gx_path_has_long_segments(const gx_path * ppath)
{
const segment *pseg = (const segment *)(ppath->first_subpath);
gs_fixed_point pt0;
pt0.x = pt0.y = 0; /* Quiet gcc warning. */
while (pseg) {
switch (pseg->type) {
case s_start:
break;
default:
if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
return true;
break;
}
pt0 = pseg->pt;
pseg = pseg->next;
}
return false;
}
/* Monotonize a curve, by splitting it if necessary. */
/* In the worst case, this could split the curve into 9 pieces. */
int
gx_curve_monotonize(gx_path * ppath, const curve_segment * pc)
{
fixed x0 = ppath->position.x, y0 = ppath->position.y;
segment_notes notes = pc->notes;
double t[5], tt = 1, tp;
int c[5];
int n0, n1, n, i, j, k = 0;
fixed ax, bx, cx, ay, by, cy, v01, v12;
fixed px, py, qx, qy, rx, ry, sx, sy;
const double delta = 0.0000001;
/* Roots of the derivative : */
n0 = gx_curve_monotonic_points(x0, pc->p1.x, pc->p2.x, pc->pt.x, t);
n1 = gx_curve_monotonic_points(y0, pc->p1.y, pc->p2.y, pc->pt.y, t + n0);
n = n0 + n1;
if (n == 0)
return gx_path_add_curve_notes(ppath, pc->p1.x, pc->p1.y,
pc->p2.x, pc->p2.y, pc->pt.x, pc->pt.y, notes);
if (n0 > 0)
c[0] = 1;
if (n0 > 1)
c[1] = 1;
if (n1 > 0)
c[n0] = 2;
if (n1 > 1)
c[n0 + 1] = 2;
/* Order roots : */
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
if (t[i] > t[j]) {
int w;
double v = t[i]; t[i] = t[j]; t[j] = v;
w = c[i]; c[i] = c[j]; c[j] = w;
}
/* Drop roots near zero : */
for (k = 0; k < n; k++)
if (t[k] >= delta)
break;
/* Merge close roots, and drop roots at 1 : */
if (t[n - 1] > 1 - delta)
n--;
for (i = k + 1, j = k; i < n && t[k] < 1 - delta; i++)
if (any_abs(t[i] - t[j]) < delta) {
t[j] = (t[j] + t[i]) / 2; /* Unlikely 3 roots are close. */
c[j] |= c[i];
} else {
j++;
t[j] = t[i];
c[j] = c[i];
}
n = j + 1;
/* Do split : */
curve_points_to_coefficients(x0, pc->p1.x, pc->p2.x, pc->pt.x, ax, bx, cx, v01, v12);
curve_points_to_coefficients(y0, pc->p1.y, pc->p2.y, pc->pt.y, ay, by, cy, v01, v12);
ax *= 3, bx *= 2; /* Coefficients of the derivative. */
ay *= 3, by *= 2;
px = x0;
py = y0;
qx = (fixed)((pc->p1.x - px) * t[0] + 0.5);
qy = (fixed)((pc->p1.y - py) * t[0] + 0.5);
tp = 0;
for (i = k; i < n; i++) {
double ti = t[i];
double t2 = ti * ti, t3 = t2 * ti;
double omt = 1 - ti, omt2 = omt * omt, omt3 = omt2 * omt;
double x = x0 * omt3 + 3 * pc->p1.x * omt2 * ti + 3 * pc->p2.x * omt * t2 + pc->pt.x * t3;
double y = y0 * omt3 + 3 * pc->p1.y * omt2 * ti + 3 * pc->p2.y * omt * t2 + pc->pt.y * t3;
double ddx = (c[i] & 1 ? 0 : ax * t2 + bx * ti + cx); /* Suppress noise. */
double ddy = (c[i] & 2 ? 0 : ay * t2 + by * ti + cy);
fixed dx = (fixed)(ddx + 0.5);
fixed dy = (fixed)(ddy + 0.5);
int code;
tt = (i + 1 < n ? t[i + 1] : 1) - ti;
rx = (fixed)(dx * (t[i] - tp) / 3 + 0.5);
ry = (fixed)(dy * (t[i] - tp) / 3 + 0.5);
sx = (fixed)(x + 0.5);
sy = (fixed)(y + 0.5);
/* Suppress the derivative sign noise near a peak : */
if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
qx = -qx, qy = -qy;
if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
rx = -rx, ry = -qy;
/* Do add : */
code = gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
if (code < 0)
return code;
notes |= sn_not_first;
px = sx;
py = sy;
qx = (fixed)(dx * tt / 3 + 0.5);
qy = (fixed)(dy * tt / 3 + 0.5);
tp = t[i];
}
sx = pc->pt.x;
sy = pc->pt.y;
rx = (fixed)((pc->pt.x - pc->p2.x) * tt + 0.5);
ry = (fixed)((pc->pt.y - pc->p2.y) * tt + 0.5);
/* Suppress the derivative sign noise near peaks : */
if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
qx = -qx, qy = -qy;
if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
rx = -rx, ry = -qy;
return gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
}
/*
* Split a curve if necessary into pieces that are monotonic in X or Y as a
* function of the curve parameter t. This allows us to rasterize curves
* directly without pre-flattening. This takes a fair amount of analysis....
* Store the values of t of the split points in pst[0] and pst[1]. Return
* the number of split points (0, 1, or 2).
*/
int
gx_curve_monotonic_points(fixed v0, fixed v1, fixed v2, fixed v3,
double pst[2])
{
/*
Let
v(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
Then
dv(t) = 3*a*t^2 + 2*b*t + c.
v(t) has a local minimum or maximum (or inflection point)
precisely where dv(t) = 0. Now the roots of dv(t) = 0 (i.e.,
the zeros of dv(t)) are at
t = ( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
= ( -b +/- sqrt(b^2 - 3*a*c) ) / 3*a
(Note that real roots exist iff b^2 >= 3*a*c.)
We want to know if these lie in the range (0..1).
(The endpoints don't count.) Call such a root a "valid zero."
Since computing the roots is expensive, we would like to have
some cheap tests to filter out cases where they don't exist
(i.e., where the curve is already monotonic).
*/
fixed v01, v12, a, b, c, b2, a3;
fixed dv_end, b2abs, a3abs;
curve_points_to_coefficients(v0, v1, v2, v3, a, b, c, v01, v12);
b2 = b << 1;
a3 = (a << 1) + a;
/*
If a = 0, the only possible zero is t = -c / 2*b.
This zero is valid iff sign(c) != sign(b) and 0 < |c| < 2*|b|.
*/
if (a == 0) {
if ((b ^ c) < 0 && any_abs(c) < any_abs(b2) && c != 0) {
*pst = (double)(-c) / b2;
return 1;
} else
return 0;
}
/*
Iff a curve is horizontal at t = 0, c = 0. In this case,
there can be at most one other zero, at -2*b / 3*a.
This zero is valid iff sign(a) != sign(b) and 0 < 2*|b| < 3*|a|.
*/
if (c == 0) {
if ((a ^ b) < 0 && any_abs(b2) < any_abs(a3) && b != 0) {
*pst = (double)(-b2) / a3;
return 1;
} else
return 0;
}
/*
Similarly, iff a curve is horizontal at t = 1, 3*a + 2*b + c = 0.
In this case, there can be at most one other zero,
at -1 - 2*b / 3*a, iff sign(a) != sign(b) and 1 < -2*b / 3*a < 2,
i.e., 3*|a| < 2*|b| < 6*|a|.
*/
else if ((dv_end = a3 + b2 + c) == 0) {
if ((a ^ b) < 0 &&
(b2abs = any_abs(b2)) > (a3abs = any_abs(a3)) &&
b2abs < a3abs << 1
) {
*pst = (double)(-b2 - a3) / a3;
return 1;
} else
return 0;
}
/*
If sign(dv_end) != sign(c), at least one valid zero exists,
since dv(0) and dv(1) have opposite signs and hence
dv(t) must be zero somewhere in the interval [0..1].
*/
else if ((dv_end ^ c) < 0);
/*
If sign(a) = sign(b), no valid zero exists,
since dv is monotonic on [0..1] and has the same sign
at both endpoints.
*/
else if ((a ^ b) >= 0)
return 0;
/*
Otherwise, dv(t) may be non-monotonic on [0..1]; it has valid zeros
iff its sign anywhere in this interval is different from its sign
at the endpoints, which occurs iff it has an extremum in this
interval and the extremum is of the opposite sign from c.
To find this out, we look for the local extremum of dv(t)
by observing
d2v(t) = 6*a*t + 2*b
which has a zero only at
t1 = -b / 3*a
Now if t1 <= 0 or t1 >= 1, no valid zero exists.
Note that we just determined that sign(a) != sign(b), so we know t1 > 0.
*/
else if (any_abs(b) >= any_abs(a3))
return 0;
/*
Otherwise, we just go ahead with the computation of the roots,
and test them for being in the correct range. Note that a valid
zero is an inflection point of v(t) iff d2v(t) = 0; we don't
bother to check for this case, since it's rare.
*/
{
double nbf = (double)(-b);
double a3f = (double)a3;
double radicand = nbf * nbf - a3f * c;
if (radicand < 0) {
if_debug1('2', "[2]negative radicand = %g\n", radicand);
return 0;
} {
double root = sqrt(radicand);
int nzeros = 0;
double z = (nbf - root) / a3f;
/*
* We need to return the zeros in the correct order.
* We know that root is non-negative, but a3f may be either
* positive or negative, so we need to check the ordering
* explicitly.
*/
if_debug2('2', "[2]zeros at %g, %g\n", z, (nbf + root) / a3f);
if (z > 0 && z < 1)
*pst = z, nzeros = 1;
if (root != 0) {
z = (nbf + root) / a3f;
if (z > 0 && z < 1) {
if (nzeros && a3f < 0) /* order is reversed */
pst[1] = *pst, *pst = z;
else
pst[nzeros] = z;
nzeros++;
}
}
return nzeros;
}
}
}
/* ---------------- Path optimization for the filling algorithm. ---------------- */
static bool
find_contacting_segments(const subpath *sp0, segment *sp0last,
const subpath *sp1, segment *sp1last,
segment **sc0, segment **sc1)
{
segment *s0, *s1;
const segment *s0s, *s1s;
int count0, count1, search_limit = 50;
int min_length = fixed_1 * 1;
/* This is a simplified algorithm, which only checks for quazi-colinear vertical lines.
"Quazi-vertical" means dx <= 1 && dy >= min_length . */
/* To avoid a big unuseful expence of the processor time,
we search the first subpath from the end
(assuming that it was recently merged near the end),
and restrict the search with search_limit segments
against a quadratic scanning of two long subpaths.
Thus algorithm is not necessary finds anything contacting.
Instead it either quickly finds something, or maybe not. */
for (s0 = sp0last, count0 = 0; count0 < search_limit && s0 != (segment *)sp0; s0 = s0->prev, count0++) {
s0s = s0->prev;
if ((s0->type == s_line || s0->type == s_gap) &&
(s0s->pt.x == s0->pt.x ||
(any_abs(s0s->pt.x - s0->pt.x) == 1 &&
any_abs(s0s->pt.y - s0->pt.y) > min_length))) {
for (s1 = sp1last, count1 = 0; count1 < search_limit && s1 != (segment *)sp1; s1 = s1->prev, count1++) {
s1s = s1->prev;
if ((s1->type == s_line || s1->type == s_gap) &&
(s1s->pt.x == s1->pt.x ||
(any_abs(s1s->pt.x - s1->pt.x) == 1 && any_abs(s1s->pt.y - s1->pt.y) > min_length))) {
if (s0s->pt.x == s1s->pt.x || s0->pt.x == s1->pt.x || s0->pt.x == s1s->pt.x || s0s->pt.x == s1->pt.x) {
if (s0s->pt.y < s0->pt.y && s1s->pt.y > s1->pt.y) {
fixed y0 = max(s0s->pt.y, s1->pt.y);
fixed y1 = min(s0->pt.y, s1s->pt.y);
if (y0 <= y1) {
*sc0 = s0;
*sc1 = s1;
return true;
}
}
if (s0s->pt.y > s0->pt.y && s1s->pt.y < s1->pt.y) {
fixed y0 = max(s0->pt.y, s1s->pt.y);
fixed y1 = min(s0s->pt.y, s1->pt.y);
if (y0 <= y1) {
*sc0 = s0;
*sc1 = s1;
return true;
}
}
}
}
}
}
}
return false;
}
int
gx_path_merge_contacting_contours(gx_path *ppath)
{
/* Now this is a simplified algorithm,
which merge only contours by a common quazi-vertical line. */
/* Note the merged contour is not equivalent to sum of original contours,
because we ignore small coordinate differences within fixed_epsilon. */
int window = 5/* max spot holes */ * 6/* segments per subpath */;
subpath *sp0 = ppath->segments->contents.subpath_first;
for (; sp0 != NULL; sp0 = (subpath *)sp0->last->next) {
segment *sp0last = sp0->last;
subpath *sp1 = (subpath *)sp0last->next, *spnext;
subpath *sp1p = sp0;
int count;
for (count = 0; sp1 != NULL && count < window; sp1 = spnext, count++) {
segment *sp1last = sp1->last;
segment *sc0, *sc1, *old_first;
spnext = (subpath *)sp1last->next;
if (find_contacting_segments(sp0, sp0last, sp1, sp1last, &sc0, &sc1)) {
/* Detach the subpath 1 from the path: */
sp1->prev->next = sp1last->next;
if (sp1last->next != NULL)
sp1last->next->prev = sp1->prev;
sp1->prev = 0;
sp1last->next = 0;
old_first = sp1->next;
/* sp1 is not longer in use. Move subpath_current from it for safe removing : */
if (ppath->segments->contents.subpath_current == sp1) {
ppath->segments->contents.subpath_current = sp1p;
}
if (sp1last->type == s_line_close) {
/* Change 'closepath' of the subpath 1 to a line (maybe degenerate) : */
sp1last->type = s_line;
/* sp1 is not longer in use. Free it : */
gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
} else if (sp1last->pt.x == sp1->pt.x && sp1last->pt.y == sp1->pt.y) {
/* Implicit closepath with zero length. Don't need a new segment. */
/* sp1 is not longer in use. Free it : */
gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
} else {
/* Insert the closing line segment. */
/* sp1 is not longer in use. Convert it to the line segment : */
sp1->type = s_line;
sp1last->next = (segment *)sp1;
sp1->next = NULL;
sp1->prev = sp1last;
sp1->last = NULL; /* Safety for garbager. */
sp1last = (segment *)sp1;
}
sp1 = 0; /* Safety. */
/* Rotate the subpath 1 to sc1 : */
{ /* Detach s_start and make a loop : */
sp1last->next = old_first;
old_first->prev = sp1last;
/* Unlink before sc1 : */
sp1last = sc1->prev;
sc1->prev->next = 0;
sc1->prev = 0; /* Safety. */
/* sp1 is not longer in use. Free it : */
if (ppath->segments->contents.subpath_current == sp1) {
ppath->segments->contents.subpath_current = sp1p;
}
gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
sp1 = 0; /* Safety. */
}
/* Insert the subpath 1 into the subpath 0 before sc0 :*/
sc0->prev->next = sc1;
sc1->prev = sc0->prev;
sp1last->next = sc0;
sc0->prev = sp1last;
/* Remove degenearte "bridge" segments : (fixme: Not done due to low importance). */
/* Edit the subpath count : */
ppath->subpath_count--;
} else
sp1p = sp1;
}
}
return 0;
}
static int
is_colinear(gs_fixed_rect *rect, fixed x, fixed y)
{
fixed x0 = rect->p.x;
fixed y0 = rect->p.y;
fixed x1 = rect->q.x;
fixed y1 = rect->q.y;
if (x0 == x1) {
if (y0 == y1) {
/* Initial case */
/* Still counts as colinear */
} else if (x == x0) {
/* OK! */
} else {
return 0; /* Not colinear */
}
} else if (rect->p.y == rect->q.y) {
if (y == rect->p.y) {
/* OK */
} else {
return 0; /* Not colinear */
}
} else {
/* Need to do hairy maths */
/* The distance of a point (x,y) from the line passing through
* (x0,y0) and (x1,y1) is:
* d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2)
*
* We want d <= epsilon to count as colinear.
*
* d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2) <= epsilon
*
* |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| <= epsilon * SQR((y1-y0)^2 + (x1-x0)^2)
*
* ((y1-y0)x - (x1-x0)y + x1y0 - y1x0)^2 <= epsilon^2 * ((y1-y0)^2 + (x1-x0)^2)
*/
int64_t ix1 = ((int64_t)x1);
int64_t iy1 = ((int64_t)y1);
int64_t dx = ix1 - x0;
int64_t dy = iy1 - y0;
int64_t num = dy*x - dx*y + ix1*y0 - iy1*x0;
int64_t den = dx*dx + dy*dy;
int epsilon_squared = 2;
if (num < 0)
num = -num;
while (num > (1<<30)) {
num >>= 2;
den >>= 1;
if (den == 0)
return 0; /* Not colinear */
}
num *= num;
if (num > epsilon_squared * den)
return 0;
}
/* rect is not really a rect. It's just a pair of points. We guarantee that x0 <= x1. */
if (x == x0) {
if (y < y0)
rect->p.y = y;
else if (y > y1)
rect->q.y = y;
} else if (x < x0) {
rect->p.x = x;
rect->p.y = y;
} else {
rect->q.x = x;
rect->q.y = y;
}
return 1;
}
static int
gx_path_copy_eliding_1d(const gx_path *ppath_old, gx_path *ppath)
{
const segment *pseg;
/*
* Since we're going to be adding to the path, unshare it
* before we start.
*/
int code = gx_path_unshare(ppath);
if (code < 0)
return code;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before eliding_1d");
#endif
pseg = (const segment *)(ppath_old->first_subpath);
while (pseg != NULL) {
const segment *look = pseg;
gs_fixed_rect rect;
rect.p.x = rect.q.x = look->pt.x;
rect.p.y = rect.q.y = look->pt.y;
if (look->type != s_start) {
dlprintf("Unlikely?");
}
look = look->next;
while (look != NULL && look->type != s_start) {
if (look->type == s_curve) {
const curve_segment *pc = (const curve_segment *)look;
if (!is_colinear(&rect, pc->p1.x, pc->p1.y) ||
!is_colinear(&rect, pc->p2.x, pc->p2.y) ||
!is_colinear(&rect, pc->pt.x, pc->pt.y))
goto not_colinear;
} else if (!is_colinear(&rect, look->pt.x, look->pt.y)) {
goto not_colinear;
}
look = look->next;
}
pseg = look;
if (0)
{
not_colinear:
/* Not colinear. We want to keep this section. */
while (look != NULL && look->type != s_start)
look = look->next;
while (pseg != look && code >= 0) {
/* Copy */
switch (pseg->type) {
case s_start:
code = gx_path_add_point(ppath,
pseg->pt.x, pseg->pt.y);
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
code = gx_path_add_curve_notes(ppath,
pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y, pseg->notes);
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_gap:
code = gx_path_add_gap_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_dash:
{
const dash_segment *pd = (const dash_segment *)pseg;
code = gx_path_add_dash_notes(ppath,
pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
break;
}
case s_line_close:
code = gx_path_close_subpath(ppath);
break;
default: /* can't happen */
code = gs_note_error(gs_error_unregistered);
}
pseg = pseg->next;
}
if (code < 0) {
gx_path_new(ppath);
return code;
}
}
}
ppath->bbox_set = false;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after eliding_1d");
#endif
return 0;
}
int
gx_path_elide_1d(gx_path *ppath)
{
int code;
gx_path path;
gx_path_init_local(&path, ppath->memory);
code = gx_path_copy_eliding_1d(ppath, &path);
if (code < 0)
return code;
gx_path_assign_free(ppath, &path);
gx_path_free(&path, "gx_path_elide_1d");
return 0;
}
|