summaryrefslogtreecommitdiff
blob: 7534f81ca7ff9a4e29ee07fd3b4d8adb82702f6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
/* Copyright (C) 2001-2019 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
   CA 94945, U.S.A., +1(415)492-9861, for further information.
*/


/* Common code for ImageType 1 and 4 initialization */
#include "gx.h"
#include "math_.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gscdefs.h"            /* for image class table */
#include "gserrors.h"
#include "gsstruct.h"
#include "gsutil.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gzstate.h"
#include "gxdevice.h"
#include "gzpath.h"
#include "gzcpath.h"
#include "gxdevmem.h"
#include "gximage.h"
#include "gxiparam.h"
#include "gdevmrop.h"
#include "gscspace.h"
#include "gscindex.h"
#include "gsicc_cache.h"
#include "gsicc_cms.h"
#include "gsicc_manage.h"
#include "gxdevsop.h"

/* Structure descriptors */
private_st_gx_image_enum();

/* Image class procedures */
extern_gx_image_class_table();

/* Enumerator procedures */
static const gx_image_enum_procs_t image1_enum_procs = {
    gx_image1_plane_data, gx_image1_end_image, gx_image1_flush
};

/* GC procedures */
gs_private_st_ptrs2(st_color_cache, gx_image_color_cache_t, "gx_image_color_cache",
                    color_cache_enum_ptrs, color_cache_reloc_ptrs,
                    is_transparent, device_contone);
static
ENUM_PTRS_WITH(image_enum_enum_ptrs, gx_image_enum *eptr)
{
    int bps;
    gs_ptr_type_t ret;

    /* Enumerate the used members of clues.dev_color. */
    index -= gx_image_enum_num_ptrs;
    bps = eptr->unpack_bps;
    if (eptr->spp != 1)
        bps = 8;
    else if (bps > 8 || eptr->unpack == sample_unpack_copy)
        bps = 1;
    if (index >= (1 << bps) * st_device_color_max_ptrs)         /* done */
        return 0;
    /* the clues may have been cleared by gx_image_free_enum, but not freed in that */
    /* function due to being at a different save level. Only trace if dev_color.type != 0. */
    if (eptr->spp == 1) {
        if (eptr->clues != NULL) {
            if (eptr->clues[(index/st_device_color_max_ptrs) *
                (255 / ((1 << bps) - 1))].dev_color.type != 0) {
                ret = ENUM_USING(st_device_color,
                                 &eptr->clues[(index / st_device_color_max_ptrs) *
                                 (255 / ((1 << bps) - 1))].dev_color,
                                 sizeof(eptr->clues[0].dev_color),
                                 index % st_device_color_max_ptrs);
            } else {
                ret = 0;
            }
        } else {
            ret = 0;
        }
    } else {
        ret = 0;
    }
    if (ret == 0)               /* don't stop early */
        ENUM_RETURN(0);
    return ret;
}

#define e1(i,elt) ENUM_PTR(i,gx_image_enum,elt);
gx_image_enum_do_ptrs(e1)
#undef e1
ENUM_PTRS_END

static RELOC_PTRS_WITH(image_enum_reloc_ptrs, gx_image_enum *eptr)
{
    int i;

#define r1(i,elt) RELOC_PTR(gx_image_enum,elt);
    gx_image_enum_do_ptrs(r1)
#undef r1
    {
        int bps = eptr->unpack_bps;

        if (eptr->spp != 1)
            bps = 8;
        else if (bps > 8 || eptr->unpack == sample_unpack_copy)
            bps = 1;
        if (eptr->spp == 1) {
        for (i = 0; i <= 255; i += 255 / ((1 << bps) - 1))
            RELOC_USING(st_device_color,
                        &eptr->clues[i].dev_color, sizeof(gx_device_color));
    }
}
}
RELOC_PTRS_END

/* Forward declarations */
static int color_draws_b_w(gx_device * dev,
                            const gx_drawing_color * pdcolor);
static int image_init_colors(gx_image_enum * penum, int bps, int spp,
                               gs_image_format_t format,
                               const float *decode,
                               const gs_gstate * pgs, gx_device * dev,
                               const gs_color_space * pcs, bool * pdcb);

/* Procedures for unpacking the input data into bytes or fracs. */
/*extern SAMPLE_UNPACK_PROC(sample_unpack_copy); *//* declared above */

/*
 * Do common initialization for processing an ImageType 1 or 4 image.
 * Allocate the enumerator and fill in the following members:
 *      rect
 */
int
gx_image_enum_alloc(const gs_image_common_t * pic,
                    const gs_int_rect * prect, gs_memory_t * mem,
                    gx_image_enum **ppenum)
{
    const gs_pixel_image_t *pim = (const gs_pixel_image_t *)pic;
    int width = pim->Width, height = pim->Height;
    int bpc = pim->BitsPerComponent;
    gx_image_enum *penum;

    if (width < 0 || height < 0)
        return_error(gs_error_rangecheck);
    switch (pim->format) {
    case gs_image_format_chunky:
    case gs_image_format_component_planar:
        switch (bpc) {
        case 1: case 2: case 4: case 8: case 12: case 16: break;
        default: return_error(gs_error_rangecheck);
        }
        break;
    case gs_image_format_bit_planar:
        if (bpc < 1 || bpc > 8)
            return_error(gs_error_rangecheck);
    }
    if (prect) {
        if (prect->p.x < 0 || prect->p.y < 0 ||
            prect->q.x < prect->p.x || prect->q.y < prect->p.y ||
            prect->q.x > width || prect->q.y > height
            )
            return_error(gs_error_rangecheck);
    }
    *ppenum = NULL;		/* in case alloc fails and caller doesn't check code */
    penum = gs_alloc_struct(mem, gx_image_enum, &st_gx_image_enum,
                            "gx_default_begin_image");
    if (penum == 0)
        return_error(gs_error_VMerror);
    memset(penum, 0, sizeof(gx_image_enum));	/* in case of failure, no dangling pointers */
    if (prect) {
        penum->rect.x = prect->p.x;
        penum->rect.y = prect->p.y;
        penum->rect.w = prect->q.x - prect->p.x;
        penum->rect.h = prect->q.y - prect->p.y;
    } else {
        penum->rect.x = 0, penum->rect.y = 0;
        penum->rect.w = width, penum->rect.h = height;
    }
    penum->rrect.x = penum->rect.x;
    penum->rrect.y = penum->rect.y;
    penum->rrect.w = penum->rect.w;
    penum->rrect.h = penum->rect.h;
    penum->drect.x = penum->rect.x;
    penum->drect.y = penum->rect.y;
    penum->drect.w = penum->rect.w;
    penum->drect.h = penum->rect.h;
#ifdef DEBUG
    if (gs_debug_c('b')) {
        dmlprintf2(mem, "[b]Image: w=%d h=%d", width, height);
        if (prect)
            dmprintf4(mem, " ((%d,%d),(%d,%d))",
                     prect->p.x, prect->p.y, prect->q.x, prect->q.y);
    }
#endif
    *ppenum = penum;
    return 0;
}

/* Convert and restrict to a valid range. */
static inline fixed float2fixed_rounded_boxed(double src) {
    float v = floor(src*fixed_scale + 0.5);

    if (v <= min_fixed)
        return min_fixed;
    else if (v >= max_fixed)
        return max_fixed;
    else
        return 	(fixed)v;
}

/* Compute the image matrix combining the ImageMatrix with either the pmat or the pgs ctm */
int
gx_image_compute_mat(const gs_gstate *pgs, const gs_matrix *pmat, const gs_matrix *ImageMatrix,
                     gs_matrix_double *rmat)
{
    int code = 0;

    if (pmat == 0)
        pmat = &ctm_only(pgs);
    if (ImageMatrix->xx == pmat->xx && ImageMatrix->xy == pmat->xy &&
        ImageMatrix->yx == pmat->yx && ImageMatrix->yy == pmat->yy) {
        /* Process common special case separately to accept singular matrix. */
        rmat->xx = rmat->yy = 1.;
        rmat->xy = rmat->yx = 0.;
        rmat->tx = pmat->tx - ImageMatrix->tx;
        rmat->ty = pmat->ty - ImageMatrix->ty;
    } else {
        if ((code = gs_matrix_invert_to_double(ImageMatrix, rmat)) < 0 ||
            (code = gs_matrix_multiply_double(rmat, pmat, rmat)) < 0
            ) {
            return code;
        }
    }
    return code;
}

/*
 * Finish initialization for processing an ImageType 1 or 4 image.
 * Assumes the following members of *penum are set in addition to those
 * set by gx_image_enum_alloc:
 *      alpha, use_mask_color, mask_color (if use_mask_color is true),
 *      masked, adjust
 */
int
gx_image_enum_begin(gx_device * dev, const gs_gstate * pgs,
                    const gs_matrix *pmat, const gs_image_common_t * pic,
                const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
                gs_memory_t * mem, gx_image_enum *penum)
{
    const gs_pixel_image_t *pim = (const gs_pixel_image_t *)pic;
    gs_image_format_t format = pim->format;
    const int width = pim->Width;
    const int height = pim->Height;
    const int bps = pim->BitsPerComponent;
    bool masked = penum->masked;
    const float *decode = pim->Decode;
    gs_matrix_double mat;
    int index_bps;
    const gs_color_space *pcs = pim->ColorSpace;
    gs_logical_operation_t lop = (pgs ? pgs->log_op : lop_default);
    int code;
    int log2_xbytes = (bps <= 8 ? 0 : arch_log2_sizeof_frac);
    int spp, nplanes, spread;
    uint bsize;
    byte *buffer = NULL;
    fixed mtx, mty;
    gs_fixed_point row_extent, col_extent, x_extent, y_extent;
    bool device_color = true;
    gs_fixed_rect obox, cbox;
    bool gridfitimages = 0;
    bool in_pattern_accumulator = 0;
    int orthogonal;
    int force_interpolation = 0;

    penum->clues = NULL;
    penum->icc_setup.has_transfer = false;
    penum->icc_setup.is_lab = false;
    penum->icc_setup.must_halftone = false;
    penum->icc_setup.need_decode = false;
    penum->Width = width;
    penum->Height = height;

    if ((code = gx_image_compute_mat(pgs, pmat, &(pim->ImageMatrix), &mat)) < 0) {
        return code;
    }
    lop = lop_sanitize(lop);
    /* Grid fit: A common construction in postscript/PDF files is for images
     * to be constructed as a series of 'stacked' 1 pixel high images.
     * Furthermore, many of these are implemented as an imagemask plotted on
     * top of thin rectangles. The different fill rules for images and line
     * art produces problems; line art fills a pixel if any part of it is
     * touched - images only fill a pixel if the centre of the pixel is
     * covered. Bug 692666 is such a problem.
     *
     * As a workaround for this problem, the code below was introduced. The
     * concept is that orthogonal images can be 'grid fitted' (or 'stretch')
     * to entirely cover pixels that they touch. Initially I had this working
     * for all images regardless of type, but as testing has proceeded, this
     * showed more and more regressions, so I've cut the cases back in which
     * this code is used until it now only triggers on imagemasks that are
     * either 1 pixel high, or wide, and then not if we are rendering a
     * glyph (such as from a type3 font).
     */

    /* Ask the device if we are in a pattern accumulator */
    in_pattern_accumulator = (dev_proc(dev, dev_spec_op)(dev, gxdso_in_pattern_accumulator, NULL, 0));
    if (in_pattern_accumulator < 0)
        in_pattern_accumulator = 0;

    /* Figure out if we are orthogonal */
    if (mat.xy == 0 && mat.yx == 0)
        orthogonal = 1;
    else if (mat.xx == 0 && mat.yy == 0)
        orthogonal = 2;
    else
        orthogonal = 0;

    /* If we are in a pattern accumulator, we choose to always grid fit
     * orthogonal images. We do this by asking the device whether we
     * should grid fit. This allows us to avoid nasty blank lines around
     * the edges of cells.
     */
    gridfitimages = in_pattern_accumulator && orthogonal;

    if (pgs != NULL && pgs->show_gstate != NULL) {
        /* If we're a graphics state, and we're in a text object, then we
         * must be in a type3 font. Don't fiddle with it. */
    } else if (!gridfitimages &&
               (!penum->masked || penum->image_parent_type != 0)) {
        /* Other than for images we are specifically looking to grid fit (such as
         * ones in a pattern device), we only grid fit imagemasks */
    } else if (gridfitimages && (penum->masked && penum->image_parent_type == 0)) {
        /* We don't gridfit imagemasks in a pattern accumulator */
    } else if (pgs != NULL && pgs->fill_adjust.x == 0 && pgs->fill_adjust.y == 0) {
        /* If fill adjust is disabled, so is grid fitting */
    } else if (orthogonal == 1) {
        if (width == 1 || gridfitimages) {
            if (mat.xx > 0) {
                fixed ix0 = int2fixed(fixed2int(float2fixed(mat.tx)));
                double x1 = mat.tx + mat.xx * width;
                fixed ix1 = int2fixed(fixed2int_ceiling(float2fixed(x1)));
                mat.tx = (double)fixed2float(ix0);
                mat.xx = (double)(fixed2float(ix1 - ix0)/width);
            } else if (mat.xx < 0) {
                fixed ix0 = int2fixed(fixed2int_ceiling(float2fixed(mat.tx)));
                double x1 = mat.tx + mat.xx * width;
                fixed ix1 = int2fixed(fixed2int(float2fixed(x1)));
                mat.tx = (double)fixed2float(ix0);
                mat.xx = (double)(fixed2float(ix1 - ix0)/width);
            }
        }
        if (height == 1 || gridfitimages) {
            if (mat.yy > 0) {
                fixed iy0 = int2fixed(fixed2int(float2fixed(mat.ty)));
                double y1 = mat.ty + mat.yy * height;
                fixed iy1 = int2fixed(fixed2int_ceiling(float2fixed(y1)));
                mat.ty = (double)fixed2float(iy0);
                mat.yy = (double)(fixed2float(iy1 - iy0)/height);
            } else if (mat.yy < 0) {
                fixed iy0 = int2fixed(fixed2int_ceiling(float2fixed(mat.ty)));
                double y1 = mat.ty + mat.yy * height;
                fixed iy1 = int2fixed(fixed2int(float2fixed(y1)));
                mat.ty = (double)fixed2float(iy0);
                mat.yy = ((double)fixed2float(iy1 - iy0)/height);
            }
        }
    } else if (orthogonal == 2) {
        if (height == 1 || gridfitimages) {
            if (mat.yx > 0) {
                fixed ix0 = int2fixed(fixed2int(float2fixed(mat.tx)));
                double x1 = mat.tx + mat.yx * height;
                fixed ix1 = int2fixed(fixed2int_ceiling(float2fixed(x1)));
                mat.tx = (double)fixed2float(ix0);
                mat.yx = (double)(fixed2float(ix1 - ix0)/height);
            } else if (mat.yx < 0) {
                fixed ix0 = int2fixed(fixed2int_ceiling(float2fixed(mat.tx)));
                double x1 = mat.tx + mat.yx * height;
                fixed ix1 = int2fixed(fixed2int(float2fixed(x1)));
                mat.tx = (double)fixed2float(ix0);
                mat.yx = (double)(fixed2float(ix1 - ix0)/height);
            }
        }
        if (width == 1 || gridfitimages) {
            if (mat.xy > 0) {
                fixed iy0 = int2fixed(fixed2int(float2fixed(mat.ty)));
                double y1 = mat.ty + mat.xy * width;
                fixed iy1 = int2fixed(fixed2int_ceiling(float2fixed(y1)));
                mat.ty = (double)fixed2float(iy0);
                mat.xy = (double)(fixed2float(iy1 - iy0)/width);
            } else if (mat.xy < 0) {
                fixed iy0 = int2fixed(fixed2int_ceiling(float2fixed(mat.ty)));
                double y1 = mat.ty + mat.xy * width;
                fixed iy1 = int2fixed(fixed2int(float2fixed(y1)));
                mat.ty = (double)fixed2float(iy0);
                mat.xy = ((double)fixed2float(iy1 - iy0)/width);
            }
        }
    }

    /* When rendering to a pattern accumulator, if we are downscaling
     * then enable interpolation, as otherwise dropouts can cause
     * serious problems. */
    if (in_pattern_accumulator) {
        double ome = ((double)(fixed_1 - fixed_epsilon)) / (double)fixed_1; /* One Minus Epsilon */

        if (orthogonal == 1) {
            if ((mat.xx > -ome && mat.xx < ome) || (mat.yy > -ome && mat.yy < ome)) {
                force_interpolation = true;
            }
        } else if (orthogonal == 2) {
            if ((mat.xy > -ome && mat.xy < ome) || (mat.yx > -ome && mat.yx < ome)) {
                force_interpolation = true;
            }
        }
    }

    /* Can we restrict the amount of image we need? */
    while (pcpath) /* So we can break out of it */
    {
        gs_rect rect, rect_out;
        gs_matrix mi;
        const gs_matrix *m = pgs != NULL ? &ctm_only(pgs) : NULL;
        gs_fixed_rect obox;
        gs_int_rect irect;
        if (m == NULL || (code = gs_matrix_invert(m, &mi)) < 0 ||
            (code = gs_matrix_multiply(&mi, &pic->ImageMatrix, &mi)) < 0) {
            /* Give up trying to shrink the render box, but continue processing */
            break;
        }
        gx_cpath_outer_box(pcpath, &obox);
        rect.p.x = fixed2float(obox.p.x);
        rect.p.y = fixed2float(obox.p.y);
        rect.q.x = fixed2float(obox.q.x);
        rect.q.y = fixed2float(obox.q.y);
        code = gs_bbox_transform(&rect, &mi, &rect_out);
        if (code < 0) {
            /* Give up trying to shrink the render/decode boxes, but continue processing */
            break;
        }
        irect.p.x = (int)(rect_out.p.x-1.0);
        irect.p.y = (int)(rect_out.p.y-1.0);
        irect.q.x = (int)(rect_out.q.x+1.0);
        irect.q.y = (int)(rect_out.q.y+1.0);
        /* We therefore only need to render within irect. Restrict rrect to this. */
        if (penum->rrect.x < irect.p.x) {
            penum->rrect.w -= irect.p.x - penum->rrect.x;
            if (penum->rrect.w < 0)
               penum->rrect.w = 0;
            penum->rrect.x = irect.p.x;
        }
        if (penum->rrect.x + penum->rrect.w > irect.q.x) {
            penum->rrect.w = irect.q.x - penum->rrect.x;
            if (penum->rrect.w < 0)
                penum->rrect.w = 0;
        }
        if (penum->rrect.y < irect.p.y) {
            penum->rrect.h -= irect.p.y - penum->rrect.y;
            if (penum->rrect.h < 0)
                penum->rrect.h = 0;
            penum->rrect.y = irect.p.y;
        }
        if (penum->rrect.y + penum->rrect.h > irect.q.y) {
            penum->rrect.h = irect.q.y - penum->rrect.y;
            if (penum->rrect.h < 0)
                penum->rrect.h = 0;
        }
        /* Need to expand the region to allow for the fact that the mitchell
         * scaler reads multiple pixels in. */
        /* If mi.{xx,yy} > 1 then we are downscaling. During downscaling,
         * the support increases to ensure that we don't lose pixels contributions
         * entirely. */
        /* I do not understand the need for the +/- 1 fudge factors,
         * but they seem to be required. Increasing the decode rectangle can
         * never be bad at least... RJW */
        {
            float support = any_abs(mi.xx);
            int isupport;
            if (any_abs(mi.yy) > support)
                support = any_abs(mi.yy);
            if (any_abs(mi.xy) > support)
                support = any_abs(mi.xy);
            if (any_abs(mi.yx) > support)
                support = any_abs(mi.yx);
            isupport = (int)(MAX_ISCALE_SUPPORT * (support+1)) + 1;
            irect.p.x -= isupport;
            irect.p.y -= isupport;
            irect.q.x += isupport;
            irect.q.y += isupport;
        }
        if (penum->drect.x < irect.p.x) {
            penum->drect.w -= irect.p.x - penum->drect.x;
            if (penum->drect.w < 0)
               penum->drect.w = 0;
            penum->drect.x = irect.p.x;
        }
        if (penum->drect.x + penum->drect.w > irect.q.x) {
            penum->drect.w = irect.q.x - penum->drect.x;
            if (penum->drect.w < 0)
                penum->drect.w = 0;
        }
        if (penum->drect.y < irect.p.y) {
            penum->drect.h -= irect.p.y - penum->drect.y;
            if (penum->drect.h < 0)
                penum->drect.h = 0;
            penum->drect.y = irect.p.y;
        }
        if (penum->drect.y + penum->drect.h > irect.q.y) {
            penum->drect.h = irect.q.y - penum->drect.y;
            if (penum->drect.h < 0)
                penum->drect.h = 0;
        }
        break; /* Out of the while */
    }
    /* Check for the intersection being null */
    if (penum->drect.x + penum->drect.w <= penum->rect.x  ||
        penum->rect.x  + penum->rect.w  <= penum->drect.x ||
        penum->drect.y + penum->drect.h <= penum->rect.y  ||
        penum->rect.y  + penum->rect.h  <= penum->drect.y)
    {
          /* Something may have gone wrong with the floating point above.
           * set the region to something sane. */
        penum->drect.x = penum->rect.x;
        penum->drect.y = penum->rect.y;
        penum->drect.w = 0;
        penum->drect.h = 0;
    }
    if (penum->rrect.x + penum->rrect.w <= penum->drect.x  ||
        penum->drect.x + penum->drect.w  <= penum->rrect.x ||
        penum->rrect.y + penum->rrect.h <= penum->drect.y  ||
        penum->drect.y + penum->drect.h  <= penum->rrect.y)
    {
          /* Something may have gone wrong with the floating point above.
           * set the region to something sane. */
        penum->rrect.x = penum->drect.x;
        penum->rrect.y = penum->drect.y;
        penum->rrect.w = 0;
        penum->rrect.h = 0;
    }

    /*penum->matrix = mat;*/
    penum->matrix.xx = mat.xx;
    penum->matrix.xy = mat.xy;
    penum->matrix.yx = mat.yx;
    penum->matrix.yy = mat.yy;
    penum->matrix.tx = mat.tx;
    penum->matrix.ty = mat.ty;
    if_debug6m('b', mem, " [%g %g %g %g %g %g]\n",
              mat.xx, mat.xy, mat.yx, mat.yy, mat.tx, mat.ty);
    /* following works for 1, 2, 4, 8, 12, 16 */
    index_bps = (bps < 8 ? bps >> 1 : (bps >> 2) + 1);
    /*
     * Compute extents with distance transformation.
     */
    if (mat.tx > 0)
        mtx = float2fixed(mat.tx);
    else { /* Use positive values to ensure round down. */
        int f = (int)-mat.tx + 1;

        mtx = float2fixed(mat.tx + f) - int2fixed(f);
    }
    if (mat.ty > 0)
        mty = float2fixed(mat.ty);
    else {  /* Use positive values to ensure round down. */
        int f = (int)-mat.ty + 1;

        mty = float2fixed(mat.ty + f) - int2fixed(f);
    }

    row_extent.x = float2fixed_rounded_boxed(width * mat.xx);
    row_extent.y =
        (is_fzero(mat.xy) ? fixed_0 :
         float2fixed_rounded_boxed(width * mat.xy));
    col_extent.x =
        (is_fzero(mat.yx) ? fixed_0 :
         float2fixed_rounded_boxed(height * mat.yx));
    col_extent.y = float2fixed_rounded_boxed(height * mat.yy);
    gx_image_enum_common_init((gx_image_enum_common_t *)penum,
                              (const gs_data_image_t *)pim,
                              &image1_enum_procs, dev,
                              (masked ? 1 : (penum->alpha ? cs_num_components(pcs)+1 : cs_num_components(pcs))),
                              format);
    if (penum->rect.w == width && penum->rect.h == height) {
        x_extent = row_extent;
        y_extent = col_extent;
    } else {
        int rw = penum->rect.w, rh = penum->rect.h;

        x_extent.x = float2fixed_rounded_boxed(rw * mat.xx);
        x_extent.y =
            (is_fzero(mat.xy) ? fixed_0 :
             float2fixed_rounded_boxed(rw * mat.xy));
        y_extent.x =
            (is_fzero(mat.yx) ? fixed_0 :
             float2fixed_rounded_boxed(rh * mat.yx));
        y_extent.y = float2fixed_rounded_boxed(rh * mat.yy);
    }
    /* Set icolor0 and icolor1 to point to image clues locations if we have
       1spp or an imagemask, otherwise image clues is not used and
       we have these values point to other member variables */
    if (masked || cs_num_components(pcs) == 1) {
        /* Go ahead and allocate now if not already done.  For a mask
           we really should only do 2 values. For now, the goal is to
           eliminate the 256 bytes for the >8bpp image enumerator */
        penum->clues = (gx_image_clue*) gs_alloc_bytes(mem, sizeof(gx_image_clue)*256,
                             "gx_image_enum_begin");
        if (penum->clues == NULL) {
            code = gs_error_VMerror;
            goto fail;
        }
        penum->icolor0 = &(penum->clues[0].dev_color);
        penum->icolor1 = &(penum->clues[255].dev_color);
    } else {
        penum->icolor0 = &(penum->icolor0_val);
        penum->icolor1 = &(penum->icolor1_val);
    }
    if (masked) {       /* This is imagemask. */
        if (bps != 1 || pcs != NULL || penum->alpha || decode[0] == decode[1]) {
            code = gs_error_rangecheck;
            goto fail;
        }
        /* Initialize color entries 0 and 255. */
        set_nonclient_dev_color(penum->icolor0, gx_no_color_index);
        set_nonclient_dev_color(penum->icolor1, gx_no_color_index);
        *(penum->icolor1) = *pdcolor;
        memcpy(&penum->map[0].table.lookup4x1to32[0],
               (decode[0] < decode[1] ? lookup4x1to32_inverted :
                lookup4x1to32_identity),
               16 * 4);
        penum->map[0].decoding = sd_none;
        spp = 1;
        lop = rop3_know_S_0(lop);
    } else {                    /* This is image, not imagemask. */
        const gs_color_space_type *pcst = pcs->type;
        int b_w_color;

        spp = cs_num_components(pcs);
        if (spp < 0) {          /* Pattern not allowed */
            code = gs_error_rangecheck;
            goto fail;
        }
        if (penum->alpha)
            ++spp;
        /* Use a less expensive format if possible. */
        switch (format) {
        case gs_image_format_bit_planar:
            if (bps > 1)
                break;
            format = gs_image_format_component_planar;
        case gs_image_format_component_planar:
            if (spp == 1)
                format = gs_image_format_chunky;
        default:                /* chunky */
            break;
        }

        if (pcs->cmm_icc_profile_data != NULL) {
            device_color = false;
        } else {
            device_color = (*pcst->concrete_space) (pcs, pgs) == pcs;
        }

        code = image_init_colors(penum, bps, spp, format, decode, pgs, dev,
                          pcs, &device_color);
        if (code < 0) {
            gs_free_object(mem, penum->clues, "gx_image_enum_begin");
            gs_free_object(mem, penum, "gx_default_begin_image");
            return gs_throw(code, "Image colors initialization failed");
        }
        /* If we have a CIE based color space and the icc equivalent profile
           is not yet set, go ahead and handle that now.  It may already
           be done due to the above init_colors which may go through remap. */
        if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
            code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(penum->icc_setup.is_lab),
                                                pgs->memory);
            if (code < 0)
                goto fail;
            if (penum->icc_setup.is_lab) {
                /* Free what ever profile was created and use the icc manager's
                   cielab profile */
                gs_color_space *curr_pcs = (gs_color_space *)pcs;
                rc_decrement(curr_pcs->icc_equivalent,"gx_image_enum_begin");
                gsicc_adjust_profile_rc(curr_pcs->cmm_icc_profile_data, -1,"gx_image_enum_begin");
                curr_pcs->cmm_icc_profile_data = pgs->icc_manager->lab_profile;
                gsicc_adjust_profile_rc(curr_pcs->cmm_icc_profile_data, 1,"gx_image_enum_begin");
            }
        }
        /* Try to transform non-default RasterOps to something */
        /* that we implement less expensively. */
        if (!pim->CombineWithColor)
            lop = rop3_know_T_0(lop);
        else if ((rop3_uses_T(lop) && color_draws_b_w(dev, pdcolor) == 0))
            lop = rop3_know_T_0(lop);

        if (lop != rop3_S &&    /* if best case, no more work needed */
            !rop3_uses_T(lop) && bps == 1 && spp == 1 &&
            (b_w_color =
             color_draws_b_w(dev, penum->icolor0)) >= 0 &&
            color_draws_b_w(dev, penum->icolor1) == (b_w_color ^ 1)
            ) {
            if (b_w_color) {    /* Swap the colors and invert the RasterOp source. */
                gx_device_color dcolor;

                dcolor = *(penum->icolor0);
                *(penum->icolor0) = *(penum->icolor1);
                *(penum->icolor1) = dcolor;
                lop = rop3_invert_S(lop);
            }
            /*
             * At this point, we know that the source pixels
             * correspond directly to the S input for the raster op,
             * i.e., icolor0 is black and icolor1 is white.
             */
            switch (lop) {
                case rop3_D & rop3_S:
                    /* Implement this as an inverted mask writing 0s. */
                    *(penum->icolor1) = *(penum->icolor0);
                    /* (falls through) */
                case rop3_D | rop3_not(rop3_S):
                    /* Implement this as an inverted mask writing 1s. */
                    memcpy(&penum->map[0].table.lookup4x1to32[0],
                           lookup4x1to32_inverted, 16 * 4);
                  rmask:        /* Fill in the remaining parameters for a mask. */
                    penum->masked = masked = true;
                    set_nonclient_dev_color(penum->icolor0, gx_no_color_index);
                    penum->map[0].decoding = sd_none;
                    lop = rop3_T;
                    break;
                case rop3_D & rop3_not(rop3_S):
                    /* Implement this as a mask writing 0s. */
                    *(penum->icolor1) = *(penum->icolor0);
                    /* (falls through) */
                case rop3_D | rop3_S:
                    /* Implement this as a mask writing 1s. */
                    memcpy(&penum->map[0].table.lookup4x1to32[0],
                           lookup4x1to32_identity, 16 * 4);
                    goto rmask;
                default:
                    ;
            }
        }
    }
    penum->device_color = device_color;
    /*
     * Adjust width upward for unpacking up to 7 trailing bits in
     * the row, plus 1 byte for end-of-run, plus up to 7 leading
     * bits for data_x offset within a packed byte.
     */
    bsize = ((bps > 8 ? width * 2 : width) + 15) * spp;
    buffer = gs_alloc_bytes(mem, bsize, "image buffer");
    if (buffer == 0) {
        code = gs_error_VMerror;
        goto fail;
    }
    penum->bps = bps;
    penum->unpack_bps = bps;
    penum->log2_xbytes = log2_xbytes;
    penum->spp = spp;
    switch (format) {
    case gs_image_format_chunky:
        nplanes = 1;
        spread = 1 << log2_xbytes;
        break;
    case gs_image_format_component_planar:
        nplanes = spp;
        spread = spp << log2_xbytes;
        break;
    case gs_image_format_bit_planar:
        nplanes = spp * bps;
        spread = spp << log2_xbytes;
        break;
    default:
        /* No other cases are possible (checked by gx_image_enum_alloc). */
        return_error(gs_error_Fatal);
    }
    penum->num_planes = nplanes;
    penum->spread = spread;
    /*
     * If we're asked to interpolate in a partial image, we have to
     * assume that the client either really only is interested in
     * the given sub-image, or else is constructing output out of
     * overlapping pieces.
     */
    penum->interpolate = force_interpolation ? interp_force : pim->Interpolate ? interp_on : interp_off;
    penum->x_extent = x_extent;
    penum->y_extent = y_extent;
    penum->posture =
        ((x_extent.y | y_extent.x) == 0 ? image_portrait :
         (x_extent.x | y_extent.y) == 0 ? image_landscape :
         image_skewed);
    penum->pgs = pgs;
    penum->pcs = pcs;
    penum->memory = mem;
    penum->buffer = buffer;
    penum->buffer_size = bsize;
    penum->line = NULL;
    penum->icc_link = NULL;
    penum->color_cache = NULL;
    penum->ht_buffer = NULL;
    penum->thresh_buffer = NULL;
    penum->use_cie_range = false;
    penum->line_size = 0;
    penum->use_rop = lop != (masked ? rop3_T : rop3_S);
#ifdef DEBUG
    if (gs_debug_c('*')) {
        if (penum->use_rop)
            dmprintf1(mem, "[%03x]", lop);
        dmprintf5(mem, "%c%d%c%dx%d ",
                 (masked ? (color_is_pure(pdcolor) ? 'm' : 'h') : 'i'),
                 bps,
                 (penum->posture == image_portrait ? ' ' :
                  penum->posture == image_landscape ? 'L' : 'T'),
                 width, height);
    }
#endif
    penum->slow_loop = 0;
    if (pcpath == 0) {
        (*dev_proc(dev, get_clipping_box)) (dev, &obox);
        cbox = obox;
        penum->clip_image = 0;
    } else
        penum->clip_image =
            (gx_cpath_outer_box(pcpath, &obox) |        /* not || */
             gx_cpath_inner_box(pcpath, &cbox) ?
             0 : image_clip_region);
    penum->clip_outer = obox;
    penum->clip_inner = cbox;
    penum->log_op = rop3_T;     /* rop device takes care of this */
    penum->clip_dev = 0;        /* in case we bail out */
    penum->rop_dev = 0;         /* ditto */
    penum->scaler = 0;          /* ditto */
    /*
     * If all four extrema of the image fall within the clipping
     * rectangle, clipping is never required.  When making this check,
     * we must carefully take into account the fact that we only care
     * about pixel centers.
     */
    {
        fixed
            epx = min(row_extent.x, 0) + min(col_extent.x, 0),
            eqx = max(row_extent.x, 0) + max(col_extent.x, 0),
            epy = min(row_extent.y, 0) + min(col_extent.y, 0),
            eqy = max(row_extent.y, 0) + max(col_extent.y, 0);

        {
            int hwx, hwy;

            switch (penum->posture) {
                case image_portrait:
                    hwx = width, hwy = height;
                    break;
                case image_landscape:
                    hwx = height, hwy = width;
                    break;
                default:
                    hwx = hwy = 0;
            }
            /*
             * If the image is only 1 sample wide or high,
             * and is less than 1 device pixel wide or high,
             * move it slightly so that it covers pixel centers.
             * This is a hack to work around a bug in some old
             * versions of TeX/dvips, which use 1-bit-high images
             * to draw horizontal and vertical lines without
             * positioning them properly.
             */
            if (hwx == 1 && eqx - epx < fixed_1) {
                fixed diff =
                arith_rshift_1(row_extent.x + col_extent.x);

                mtx = (((mtx + diff) | fixed_half) & -fixed_half) - diff;
            }
            if (hwy == 1 && eqy - epy < fixed_1) {
                fixed diff =
                arith_rshift_1(row_extent.y + col_extent.y);

                mty = (((mty + diff) | fixed_half) & -fixed_half) - diff;
            }
        }
        if_debug5m('b', mem, "[b]Image: %sspp=%d, bps=%d, mt=(%g,%g)\n",
                   (masked? "masked, " : ""), spp, bps,
                   fixed2float(mtx), fixed2float(mty));
        if_debug9m('b', mem,
                   "[b]   cbox=(%g,%g),(%g,%g), obox=(%g,%g),(%g,%g), clip_image=0x%x\n",
                   fixed2float(cbox.p.x), fixed2float(cbox.p.y),
                   fixed2float(cbox.q.x), fixed2float(cbox.q.y),
                   fixed2float(obox.p.x), fixed2float(obox.p.y),
                   fixed2float(obox.q.x), fixed2float(obox.q.y),
                   penum->clip_image);
        /* These DDAs enumerate the starting position of each source pixel
         * row in device space. */
        dda_init(penum->dda.row.x, mtx, col_extent.x, height);
        dda_init(penum->dda.row.y, mty, col_extent.y, height);
        if (penum->posture == image_portrait) {
            penum->dst_width = row_extent.x;
            penum->dst_height = col_extent.y;
        } else {
            penum->dst_width = col_extent.x;
            penum->dst_height = row_extent.y;
        }
        /* For gs_image_class_0_interpolate. */
        penum->yi0 = fixed2int_pixround_perfect(dda_current(penum->dda.row.y)); /* For gs_image_class_0_interpolate. */
        if (penum->rect.y) {
            int y = penum->rect.y;

            while (y--) {
                dda_next(penum->dda.row.x);
                dda_next(penum->dda.row.y);
            }
        }
        penum->cur.x = penum->prev.x = dda_current(penum->dda.row.x);
        penum->cur.y = penum->prev.y = dda_current(penum->dda.row.y);
        /* These DDAs enumerate the starting positions of each row of our
         * source pixel data, in the subrectangle ('strip') that we are
         * actually rendering. */
        dda_init(penum->dda.strip.x, penum->cur.x, row_extent.x, width);
        dda_init(penum->dda.strip.y, penum->cur.y, row_extent.y, width);
        if (penum->rect.x) {
            dda_advance(penum->dda.strip.x, penum->rect.x);
            dda_advance(penum->dda.strip.y, penum->rect.x);
        }
        {
            fixed ox = dda_current(penum->dda.strip.x);
            fixed oy = dda_current(penum->dda.strip.y);

            if (!penum->clip_image)     /* i.e., not clip region */
                penum->clip_image =
                    (fixed_pixround(ox + epx) < fixed_pixround(cbox.p.x) ?
                     image_clip_xmin : 0) +
                    (fixed_pixround(ox + eqx) >= fixed_pixround(cbox.q.x) ?
                     image_clip_xmax : 0) +
                    (fixed_pixround(oy + epy) < fixed_pixround(cbox.p.y) ?
                     image_clip_ymin : 0) +
                    (fixed_pixround(oy + eqy) >= fixed_pixround(cbox.q.y) ?
                     image_clip_ymax : 0);
        }
    }
    penum->y = 0;
    penum->used.x = 0;
    penum->used.y = 0;
    if (penum->clip_image && pcpath) {  /* Set up the clipping device. */
        gx_device_clip *cdev =
            gs_alloc_struct(mem, gx_device_clip,
                            &st_device_clip, "image clipper");

        if (cdev == NULL) {
            code = gs_error_VMerror;
            goto fail;
        }
        gx_make_clip_device_in_heap(cdev, pcpath, dev, mem);
        penum->clip_dev = cdev;
        penum->dev = (gx_device *)cdev; /* Will restore this in a mo. Hacky! */
    }
    if (penum->use_rop) {       /* Set up the RasterOp source device. */
        gx_device_rop_texture *rtdev;

        code = gx_alloc_rop_texture_device(&rtdev, mem,
                                           "image RasterOp");
        if (code < 0)
            return code;
        /* The 'target' must not be NULL for gx_make_rop_texture_device */
        if (!penum->clip_dev && !dev)
            return_error(gs_error_undefined);

        gx_make_rop_texture_device(rtdev,
                                   (penum->clip_dev != 0 ?
                                    (gx_device *) penum->clip_dev :
                                    dev), lop, pdcolor);
        gx_device_retain((gx_device *)rtdev, true);
        penum->rop_dev = rtdev;
        penum->dev = (gx_device *)rtdev; /* Will restore this in a mo. Hacky! */
    }
    {
        static sample_unpack_proc_t procs[2][6] = {
        {   sample_unpack_1, sample_unpack_2,
            sample_unpack_4, sample_unpack_8,
            sample_unpack_12, sample_unpack_16
        },
        {   sample_unpack_1_interleaved, sample_unpack_2_interleaved,
            sample_unpack_4_interleaved, sample_unpack_8_interleaved,
            sample_unpack_12, sample_unpack_16
        }};
        int num_planes = penum->num_planes;
        bool interleaved = (num_planes == 1 && penum->plane_depths[0] != penum->bps);
        irender_proc_t render_fn = NULL;
        int i;

        if (interleaved) {
            int num_components = penum->plane_depths[0] / penum->bps;

            for (i = 1; i < num_components; i++) {
                if (decode[0] != decode[i * 2 + 0] ||
                    decode[1] != decode[i * 2 + 1])
                    break;
            }
            if (i == num_components)
                interleaved = false; /* Use single table. */
        }
        penum->unpack = procs[interleaved][index_bps];

        if_debug1m('b', mem, "[b]unpack=%d\n", bps);
        /* Set up pixel0 for image class procedures. */
        penum->dda.pixel0 = penum->dda.strip;
        penum->skip_next_line = NULL;
        for (i = 0; i < gx_image_class_table_count; ++i) {
            code = gx_image_class_table[i](penum, &render_fn);
            if (code < 0)
                goto fail;

            if (render_fn != NULL) {
                penum->render = render_fn;
                break;
            }
        }
        penum->dev = dev; /* Restore this (in case it was changed to cdev or rtdev) */
        if (i == gx_image_class_table_count) {
            /* No available class can handle this image. */
            return_error(gs_error_rangecheck);
        }
    }
    return 0;

fail:
    gs_free_object(mem, buffer, "image buffer");
    gs_free_object(mem, penum->clues, "gx_image_enum_begin");
    gs_free_object(mem, penum, "gx_begin_image1");
    return code;
}

/* If a drawing color is black or white, return 0 or 1 respectively, */
/* otherwise return -1. */
static int
color_draws_b_w(gx_device * dev, const gx_drawing_color * pdcolor)
{
    if (color_is_pure(pdcolor)) {
        gx_color_value rgb[3];

        (*dev_proc(dev, map_color_rgb)) (dev, gx_dc_pure_color(pdcolor),
                                         rgb);
        if (!(rgb[0] | rgb[1] | rgb[2]))
            return 0;
        if ((rgb[0] & rgb[1] & rgb[2]) == gx_max_color_value)
            return 1;
    }
    return -1;
}


static void
image_cache_decode(gx_image_enum *penum, byte input, byte *output, bool scale)
{
    float temp;

    switch ( penum->map[0].decoding ) {
        case sd_none:
            *output = input;
            break;
        case sd_lookup:
            temp = penum->map[0].decode_lookup[input >> 4]*255.0f;
            if (temp > 255) temp = 255;
            if (temp < 0 ) temp = 0;
            *output = (unsigned char) temp;
            break;
        case sd_compute:
            temp = penum->map[0].decode_base +
                (float) input * penum->map[0].decode_factor;
            if (scale) {
                temp = temp * 255.0;
            }
            if (temp > 255) temp = 255;
            if (temp < 0 ) temp = 0;
            *output = (unsigned char) temp;
            break;
        default:
            *output = 0;
            break;
    }
}

static bool
decode_range_needed(gx_image_enum *penum)
{
    bool scale = true;

    if (penum->map[0].decoding == sd_compute) {
        if (!(gs_color_space_is_ICC(penum->pcs) || 
            gs_color_space_is_PSCIE(penum->pcs))) {
            scale = false;
        } 
    } 
    return scale;
}

/* A special case where we go ahead and initialize the whole index cache with
   contone.  Device colors.  If we are halftoning we will then go ahead and
   apply the thresholds to the device contone values.  Only used for gray,
   rgb or cmyk source colors (No DeviceN for now) */
/* TO DO  Add in PSCIE decoder */
int
image_init_color_cache(gx_image_enum * penum, int bps, int spp)
{
    int num_des_comp = penum->dev->color_info.num_components;
    int num_src_comp;
    int num_entries = 1 << bps;
    bool need_decode = penum->icc_setup.need_decode;
    bool has_transfer = penum->icc_setup.has_transfer;
    byte value;
    bool decode_scale = true;
    int k, kk;
    byte psrc[4];
    byte *temp_buffer;
    byte *byte_ptr;
    bool is_indexed = (gs_color_space_get_index(penum->pcs) ==
                                            gs_color_space_index_Indexed);
    bool free_temp_buffer = true;
    gsicc_bufferdesc_t input_buff_desc;
    gsicc_bufferdesc_t output_buff_desc;
    gx_color_value conc[GX_DEVICE_COLOR_MAX_COMPONENTS];

    if (penum->icc_link == NULL) {
        return gs_rethrow(-1, "ICC Link not created during image render color");
    }
    if (is_indexed) {
        num_src_comp = gs_color_space_num_components(penum->pcs->base_space);
    } else {
        /* Detect case where cache is not needed.  Colors are already in the
           device space.  Need to fast track this one and halftone row directly.
           Detected in gximono.c by looking if penum->color_cache is NULL */
        if (penum->icc_link->is_identity && !need_decode && !has_transfer) {
            return 0;
        }
        num_src_comp = 1;
    }
    /* Allocate cache of device contone values */
    penum->color_cache = gs_alloc_struct(penum->memory, gx_image_color_cache_t,
                                         &st_color_cache,
                                         "image_init_color_cache");
    penum->color_cache->device_contone = (byte*) gs_alloc_bytes(penum->memory,
                   num_des_comp * num_entries * sizeof(byte), "image_init_color_cache");
    penum->color_cache->is_transparent = (bool*) gs_alloc_bytes(penum->memory,
             num_entries * sizeof(bool), "image_init_color_cache");
    /* Initialize */
    memset(penum->color_cache->is_transparent,0,num_entries * sizeof(bool));
    /* Depending upon if we need decode and ICC CM, fill the cache a couple
       different ways. If the link is the identity, then we don't need to do any
       color conversions except for potentially a decode.  This is written in
       the manner shown below so that the common case of no decode and indexed
       image with a look-up-table uses the table data directly or does as many
       operations with memcpy as we can */
    /* Need to check the decode output range so we know how we need to scale.
       We want 8 bit output */
    if (need_decode) {
        decode_scale = decode_range_needed(penum);
    }
    if (penum->icc_link->is_identity) {
        /* No CM needed.  */
        if (need_decode || has_transfer) {
            /* Slower case.  This could be sped up later to avoid the tests
               within the loop by use of specialized loops.  */
            for (k = 0; k < num_entries; k++) {
                /* Data is in k */
                if (need_decode) {
                    image_cache_decode(penum, k, &value, decode_scale);
                } else {
                    value = k;
                }
                /* Data is in value */
                if (is_indexed) {
                    gs_cspace_indexed_lookup_bytes(penum->pcs, value, psrc);
                } else {
                    psrc[0] = value;
                }
                /* Data is in psrc */
                /* These silly transforms need to go away. ToDo. */
                if (has_transfer) {
                    for (kk = 0; kk < num_des_comp; kk++) {
                        conc[kk] = gx_color_value_from_byte(psrc[kk]);
                    }
                    cmap_transfer(&(conc[0]), penum->pgs, penum->dev);
                    for (kk = 0; kk < num_des_comp; kk++) {
                        psrc[kk] = gx_color_value_to_byte(conc[kk]);
                    }
                }
                memcpy(&(penum->color_cache->device_contone[k * num_des_comp]),
                               psrc, num_des_comp);
            }
        } else {
            /* Indexing only.  No CM, decode or transfer functions. */
            for (k = 0; k < num_entries; k++) {
                gs_cspace_indexed_lookup_bytes(penum->pcs, (float)k, psrc);
                memcpy(&(penum->color_cache->device_contone[k * num_des_comp]),
                           psrc, num_des_comp);
            }
        }
    } else {
        /* Need CM */
        /* We need to worry about if the source is indexed and if we need
           to decode first.  Then we can apply CM. Create a temp buffer in
           the source space and then transform it with one call */
        temp_buffer = (byte*) gs_alloc_bytes(penum->memory,
                                             num_entries * num_src_comp,
                                             "image_init_color_cache");
        if (need_decode) {
            if (is_indexed) {
                /* Decode and lookup in index */
                for (k = 0; k < num_entries; k++) {
                    image_cache_decode(penum, k, &value, decode_scale);
                    gs_cspace_indexed_lookup_bytes(penum->pcs, value, psrc);
                    memcpy(&(temp_buffer[k * num_src_comp]), psrc, num_src_comp);
                }
            } else {
                /* Decode only */
                for (k = 0; k < num_entries; k++) {
                    image_cache_decode(penum, k, &(temp_buffer[k]), decode_scale);
                }
            }
        } else {
            /* No Decode */
            if (is_indexed) {
                /* If index uses a num_entries sized table then just use its pointer */
                if (penum->pcs->params.indexed.use_proc ||
                    penum->pcs->params.indexed.hival < (num_entries - 1)) {
                    /* Have to do the slow way */
                    for (k = 0; k <= penum->pcs->params.indexed.hival; k++) {
                        gs_cspace_indexed_lookup_bytes(penum->pcs, (float)k, psrc);
                        memcpy(&(temp_buffer[k * num_src_comp]), psrc, num_src_comp);
                    }
                    /* just use psrc results from converting 'hival' to fill the remaining slots */
                    for (; k < num_entries; k++) {
                        memcpy(&(temp_buffer[k * num_src_comp]), psrc, num_src_comp);
                    }
                } else {
                    /* Use the index table directly. */
                    gs_free_object(penum->memory, temp_buffer, "image_init_color_cache");
                    free_temp_buffer = false;
                    temp_buffer = (byte *)(penum->pcs->params.indexed.lookup.table.data);
                }
            } else {
                /* CM only */
                for (k = 0; k < num_entries; k++) {
                    temp_buffer[k] = k;
                }
            }
        }
        /* Set up the buffer descriptors. */
        gsicc_init_buffer(&input_buff_desc, num_src_comp, 1, false, false, false,
                          0, num_entries * num_src_comp, 1, num_entries);
        gsicc_init_buffer(&output_buff_desc, num_des_comp, 1, false, false, false,
                          0, num_entries * num_des_comp,
                      1, num_entries);
        (penum->icc_link->procs.map_buffer)(penum->dev, penum->icc_link, 
                                            &input_buff_desc, &output_buff_desc, 
                                            (void*) temp_buffer,
                                            (void*) penum->color_cache->device_contone);
        /* Check if we need to apply any transfer functions.  If so then do it now */
        if (has_transfer) {
            for (k = 0; k < num_entries; k++) {
                byte_ptr =
                    &(penum->color_cache->device_contone[k * num_des_comp]);
                for (kk = 0; kk < num_des_comp; kk++) {
                    conc[kk] = gx_color_value_from_byte(byte_ptr[kk]);
                }
                cmap_transfer(&(conc[0]), penum->pgs, penum->dev);
                for (kk = 0; kk < num_des_comp; kk++) {
                    byte_ptr[kk] = gx_color_value_to_byte(conc[kk]);
                }
            }
        }
        if (free_temp_buffer)
            gs_free_object(penum->memory, temp_buffer, "image_init_color_cache");
    }
    return 0;
}

/* Export this for use by image_render_ functions */
void
image_init_clues(gx_image_enum * penum, int bps, int spp)
{
    /* Initialize the color table */
#define ictype(i)\
  penum->clues[i].dev_color.type

    switch ((spp == 1 ? bps : 8)) {
        case 8:         /* includes all color images */
            {
                register gx_image_clue *pcht = &penum->clues[0];
                register int n = 64;    /* 8 bits means 256 clues, do   */
                                        /* 4 at a time for efficiency   */
                do {
                    pcht[0].dev_color.type =
                        pcht[1].dev_color.type =
                        pcht[2].dev_color.type =
                        pcht[3].dev_color.type =
                        gx_dc_type_none;
                    pcht[0].key = pcht[1].key =
                        pcht[2].key = pcht[3].key = 0;
                    pcht += 4;
                }
                while (--n > 0);
                penum->clues[0].key = 1;        /* guarantee no hit */
                break;
            }
        case 4:
            ictype(17) = ictype(2 * 17) = ictype(3 * 17) =
                ictype(4 * 17) = ictype(6 * 17) = ictype(7 * 17) =
                ictype(8 * 17) = ictype(9 * 17) = ictype(11 * 17) =
                ictype(12 * 17) = ictype(13 * 17) = ictype(14 * 17) =
                gx_dc_type_none;
            /* falls through */
        case 2:
            ictype(5 * 17) = ictype(10 * 17) = gx_dc_type_none;
#undef ictype
    }
}

/* Initialize the color mapping tables for a non-mask image. */
static int
image_init_colors(gx_image_enum * penum, int bps, int spp,
                  gs_image_format_t format, const float *decode /*[spp*2] */ ,
                  const gs_gstate * pgs, gx_device * dev,
                  const gs_color_space * pcs, bool * pdcb)
{
    int ci, decode_type, code;
    static const float default_decode[] = {
        0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
    };

    /* Clues are only used with image_mono_render */
    if (spp == 1) {
        image_init_clues(penum, bps, spp);
    }
    decode_type = 3; /* 0=custom, 1=identity, 2=inverted, 3=impossible */
    for (ci = 0; ci < spp; ci +=2 ) {
        decode_type &= (decode[ci] == 0. && decode[ci + 1] == 1.) |
                       (decode[ci] == 1. && decode[ci + 1] == 0.) << 1;
    }

    /* Initialize the maps from samples to intensities. */
    for (ci = 0; ci < spp; ci++) {
        sample_map *pmap = &penum->map[ci];

        /* If the decoding is [0 1] or [1 0], we can fold it */
        /* into the expansion of the sample values; */
        /* otherwise, we have to use the floating point method. */

        const float *this_decode = &decode[ci * 2];
        const float *map_decode;        /* decoding used to */
                                        /* construct the expansion map */
        const float *real_decode;       /* decoding for expanded samples */

        map_decode = real_decode = this_decode;
        if (!(decode_type & 1)) {
            if ((decode_type & 2) && bps <= 8) {
                real_decode = default_decode;
            } else {
                *pdcb = false;
                map_decode = default_decode;
            }
        }
        if (bps > 2 || format != gs_image_format_chunky) {
            if (bps <= 8)
                image_init_map(&pmap->table.lookup8[0], 1 << bps,
                               map_decode);
        } else {                /* The map index encompasses more than one pixel. */
            byte map[4];
            register int i;

            image_init_map(&map[0], 1 << bps, map_decode);
            switch (bps) {
                case 1:
                    {
                        register bits32 *p = &pmap->table.lookup4x1to32[0];

                        if (map[0] == 0 && map[1] == 0xff)
                            memcpy((byte *) p, lookup4x1to32_identity, 16 * 4);
                        else if (map[0] == 0xff && map[1] == 0)
                            memcpy((byte *) p, lookup4x1to32_inverted, 16 * 4);
                        else
                            for (i = 0; i < 16; i++, p++)
                                ((byte *) p)[0] = map[i >> 3],
                                    ((byte *) p)[1] = map[(i >> 2) & 1],
                                    ((byte *) p)[2] = map[(i >> 1) & 1],
                                    ((byte *) p)[3] = map[i & 1];
                    }
                    break;
                case 2:
                    {
                        register bits16 *p = &pmap->table.lookup2x2to16[0];

                        for (i = 0; i < 16; i++, p++)
                            ((byte *) p)[0] = map[i >> 2],
                                ((byte *) p)[1] = map[i & 3];
                    }
                    break;
            }
        }
        pmap->decode_base /* = decode_lookup[0] */  = real_decode[0];
        pmap->decode_factor =
            (real_decode[1] - real_decode[0]) /
            (bps <= 8 ? 255.0 : (float)frac_1);
        pmap->decode_max /* = decode_lookup[15] */  = real_decode[1];
        if (decode_type) {
            pmap->decoding = sd_none;
            pmap->inverted = map_decode[0] != 0;
        } else if (bps <= 4) {
            int step = 15 / ((1 << bps) - 1);
            int i;

            pmap->decoding = sd_lookup;
            for (i = 15 - step; i > 0; i -= step)
                pmap->decode_lookup[i] = pmap->decode_base +
                    i * (255.0 / 15) * pmap->decode_factor;
            pmap->inverted = 0;
        } else {
            pmap->decoding = sd_compute;
            pmap->inverted = 0;
        }
        if (spp == 1) {         /* and ci == 0 *//* Pre-map entries 0 and 255. */
            gs_client_color cc;

            /* Image clues are used in this case */
            cc.paint.values[0] = real_decode[0];
            code = (*pcs->type->remap_color) (&cc, pcs, penum->icolor0,
                                       pgs, dev, gs_color_select_source);
            if (code < 0) 
                return code;
            cc.paint.values[0] = real_decode[1];
            code = (*pcs->type->remap_color) (&cc, pcs, penum->icolor1,
                                       pgs, dev, gs_color_select_source);
            if (code < 0) 
                return code;
        }
    }
    return 0;
}
/* Construct a mapping table for sample values. */
/* map_size is 2, 4, 16, or 256.  Note that 255 % (map_size - 1) == 0, */
/* so the division 0xffffL / (map_size - 1) is always exact. */
void
image_init_map(byte * map, int map_size, const float *decode)
{
    float min_v = decode[0];
    float diff_v = decode[1] - min_v;

    if (diff_v == 1 || diff_v == -1) {  /* We can do the stepping with integers, without overflow. */
        byte *limit = map + map_size;
        uint value = (uint)(min_v * 0xffffL);
        int diff = (int)(diff_v * (0xffffL / (map_size - 1)));

        for (; map != limit; map++, value += diff)
            *map = value >> 8;
    } else {                    /* Step in floating point, with clamping. */
        int i;

        for (i = 0; i < map_size; ++i) {
            int value = (int)((min_v + diff_v * i / (map_size - 1)) * 255);

            map[i] = (value < 0 ? 0 : value > 255 ? 255 : value);
        }
    }
}

/*
 * Scale a pair of mask_color values to match the scaling of each sample to
 * a full byte, and complement and swap them if the map incorporates
 * a Decode = [1 0] inversion.
 */
void
gx_image_scale_mask_colors(gx_image_enum *penum, int component_index)
{
    uint scale = 255 / ((1 << penum->bps) - 1);
    uint *values = &penum->mask_color.values[component_index * 2];
    uint v0 = values[0] *= scale;
    uint v1 = values[1] *= scale;

    if (penum->map[component_index].decoding == sd_none &&
        penum->map[component_index].inverted
        ) {
        values[0] = 255 - v1;
        values[1] = 255 - v0;
    }
}

/* Used to indicate for ICC procesing if we have decoding to do */
bool
gx_has_transfer(const gs_gstate *pgs, int num_comps)
{
    int k;

    for (k = 0; k < num_comps; k++) {
        if (pgs->effective_transfer[k]->proc != gs_identity_transfer) {
            return(true);
        }
    }
    return(false);
}