summaryrefslogtreecommitdiff
blob: 1c39b487469f906175ff161742c4cf4f0a5c829b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
/* Copyright (C) 2001-2020 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
   CA 94945, U.S.A., +1(415)492-9861, for further information.
*/


/* ImageType 3x image implementation */
/****** THE REAL WORK IS NYI ******/
#include "math_.h"		/* for ceil, floor */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsbitops.h"
#include "gscspace.h"
#include "gscpixel.h"
#include "gsstruct.h"
#include "gxdevice.h"
#include "gxdevmem.h"
#include "gximag3x.h"
#include "gxgstate.h"
#include "gdevbbox.h"
#include <limits.h> /* For INT_MAX etc */

extern_st(st_color_space);

/* Forward references */
static dev_proc_begin_typed_image(gx_begin_image3x);
static image_enum_proc_plane_data(gx_image3x_plane_data);
static image_enum_proc_end_image(gx_image3x_end_image);
static image_enum_proc_flush(gx_image3x_flush);
static image_enum_proc_planes_wanted(gx_image3x_planes_wanted);

/* GC descriptor */
private_st_gs_image3x();

/* Define the image type for ImageType 3x images. */
const gx_image_type_t gs_image_type_3x = {
    &st_gs_image3x, gx_begin_image3x, gx_data_image_source_size,
    gx_image_no_sput, gx_image_no_sget, gx_image_default_release,
    IMAGE3X_IMAGETYPE
};
static const gx_image_enum_procs_t image3x_enum_procs = {
    gx_image3x_plane_data, gx_image3x_end_image,
    gx_image3x_flush, gx_image3x_planes_wanted
};

/* Initialize an ImageType 3x image. */
static void
gs_image3x_mask_init(gs_image3x_mask_t *pimm)
{
    pimm->InterleaveType = 0;	/* not a valid type */
    pimm->has_Matte = false;
    gs_data_image_t_init(&pimm->MaskDict, 1);
    pimm->MaskDict.BitsPerComponent = 0;	/* not supplied */
}
void
gs_image3x_t_init(gs_image3x_t * pim, gs_color_space * color_space)
{
    gs_pixel_image_t_init((gs_pixel_image_t *) pim, color_space);
    pim->type = &gs_image_type_3x;
    gs_image3x_mask_init(&pim->Opacity);
    gs_image3x_mask_init(&pim->Shape);
}

/*
 * We implement ImageType 3 images by interposing a mask clipper in
 * front of an ordinary ImageType 1 image.  Note that we build up the
 * mask row-by-row as we are processing the image.
 *
 * We export a generalized form of the begin_image procedure for use by
 * the PDF and PostScript writers.
 */

typedef struct image3x_channel_state_s {
    gx_image_enum_common_t *info;
    gx_device *mdev;		/* gx_device_memory in default impl. */
                                /* (only for masks) */
    gs_image3_interleave_type_t InterleaveType;
    int width, height, full_height, depth;
    byte *data;			/* (if chunky) */
    /* Only the following change dynamically. */
    int y;
    int skip;			/* only for masks, # of rows to skip, */
                                /* see below */
} image3x_channel_state_t;
typedef struct gx_image3x_enum_s {
    gx_image_enum_common;
    gx_device *pcdev;		/* gx_device_mask_clip in default impl. */
    int num_components;		/* (not counting masks) */
    int bpc;			/* pixel BitsPerComponent */
#define NUM_MASKS 2		/* opacity, shape */
    image3x_channel_state_t mask[NUM_MASKS], pixel;
} gx_image3x_enum_t;

extern_st(st_gx_image_enum_common);
gs_private_st_suffix_add9(st_image3x_enum, gx_image3x_enum_t,
  "gx_image3x_enum_t", image3x_enum_enum_ptrs, image3x_enum_reloc_ptrs,
  st_gx_image_enum_common, pcdev, mask[0].info, mask[0].mdev, mask[0].data,
  mask[1].info, mask[1].mdev, mask[1].data, pixel.info, pixel.data);

/*
 * Begin a generic ImageType 3x image, with client handling the creation of
 * the mask image and mask clip devices.
 */
typedef struct image3x_channel_values_s {
    gs_matrix matrix;
    gs_point corner;
    gs_int_rect rect;
    gs_image_t image;
} image3x_channel_values_t;
static int check_image3x_mask(const gs_image3x_t *pim,
                               const gs_image3x_mask_t *pimm,
                               const image3x_channel_values_t *ppcv,
                               image3x_channel_values_t *pmcv,
                               image3x_channel_state_t *pmcs,
                               gs_memory_t *mem);
int
gx_begin_image3x_generic(gx_device * dev,
                        const gs_gstate *pgs, const gs_matrix *pmat,
                        const gs_image_common_t *pic, const gs_int_rect *prect,
                        const gx_drawing_color *pdcolor,
                        const gx_clip_path *pcpath, gs_memory_t *mem,
                        image3x_make_mid_proc_t make_mid,
                        image3x_make_mcde_proc_t make_mcde,
                        gx_image_enum_common_t **pinfo)
{
    const gs_image3x_t *pim = (const gs_image3x_t *)pic;
    gx_image3x_enum_t *penum;
    gx_device *pcdev = 0;
    image3x_channel_values_t mask[2], pixel;
    gs_matrix mat;
    gx_device *midev[2];
    gx_image_enum_common_t *minfo[2];
    gs_int_point origin[2];
    int code;
    int i;

    /* Validate the parameters. */
    if (pim->Height <= 0)
        return_error(gs_error_rangecheck);
    penum = gs_alloc_struct(mem, gx_image3x_enum_t, &st_image3x_enum,
                            "gx_begin_image3x");
    if (penum == 0)
        return_error(gs_error_VMerror);
    /* Initialize pointers now in case we bail out. */
    penum->mask[0].info = 0, penum->mask[0].mdev = 0, penum->mask[0].data = 0;
    penum->mask[1].info = 0, penum->mask[1].mdev = 0, penum->mask[1].data = 0;
    penum->pixel.info = 0, penum->pixel.data = 0;
    if (prect)
        pixel.rect = *prect;
    else {
        pixel.rect.p.x = pixel.rect.p.y = 0;
        pixel.rect.q.x = pim->Width;
        pixel.rect.q.y = pim->Height;
    }
    if ((code = gs_matrix_invert(&pim->ImageMatrix, &pixel.matrix)) < 0 ||
        (code = gs_point_transform(pim->Width, pim->Height, &pixel.matrix,
                                   &pixel.corner)) < 0 ||
        (code = check_image3x_mask(pim, &pim->Opacity, &pixel, &mask[0],
                                   &penum->mask[0], mem)) < 0 ||
        (code = check_image3x_mask(pim, &pim->Shape, &pixel, &mask[1],
                                   &penum->mask[1], mem)) < 0
        ) {
        goto out0;
    }
    penum->num_components =
        gs_color_space_num_components(pim->ColorSpace);
    gx_image_enum_common_init((gx_image_enum_common_t *) penum,
                              (const gs_data_image_t *)pim,
                              &image3x_enum_procs, dev,
                              1 + penum->num_components,
                              pim->format);
    penum->pixel.width = pixel.rect.q.x - pixel.rect.p.x;
    penum->pixel.height = pixel.rect.q.y - pixel.rect.p.y;
    penum->pixel.full_height = pim->Height;
    penum->pixel.y = 0;
    if (penum->mask[0].data || penum->mask[1].data) {
        /* Also allocate a row buffer for the pixel data. */
        penum->pixel.data =
            gs_alloc_bytes(mem,
                           (penum->pixel.width * pim->BitsPerComponent *
                            penum->num_components + 7) >> 3,
                           "gx_begin_image3x(pixel.data)");
        if (penum->pixel.data == 0) {
            code = gs_note_error(gs_error_VMerror);
            goto out1;
        }
    }
    penum->bpc = pim->BitsPerComponent;
    penum->memory = mem;
    if (pmat == 0)
        pmat = &ctm_only(pgs);
    for (i = 0; i < NUM_MASKS; ++i) {
        gs_rect mrect;
        gx_device *mdev;
        /*
         * The mask data has to be defined in a DevicePixel color space
         * of the correct depth so that no color mapping will occur.
         */
        /****** FREE COLOR SPACE ON ERROR OR AT END ******/
        gs_color_space *pmcs;

        if (penum->mask[i].depth == 0) {	/* mask not supplied */
            midev[i] = 0;
            minfo[i] = 0;
            continue;
        }
        code = gs_cspace_new_DevicePixel(mem, &pmcs, penum->mask[i].depth);
        if (code < 0)
            return code;
        mrect.p.x = mrect.p.y = 0;
        mrect.q.x = penum->mask[i].width;
        mrect.q.y = penum->mask[i].height;
        if ((code = gs_matrix_multiply(&mask[i].matrix, pmat, &mat)) < 0 ||
            (code = gs_bbox_transform(&mrect, &mat, &mrect)) < 0
            )
            return code;

        /* Bug 700438: If the rectangle is out of range, bail */
        if (mrect.p.x >= (double)INT_MAX || mrect.q.x <= (double)INT_MIN ||
            mrect.p.y >= (double)INT_MAX || mrect.q.y <= (double)INT_MIN) {
                code = gs_note_error(gs_error_rangecheck);
            goto out1;
        }

        /* This code was changed for bug 686843/687411, but in a way that
         * a) looked wrong, and b) doesn't appear to make a difference. Revert
         * it to the sane version until we have evidence why not. */
        origin[i].x = (int)floor(mrect.p.x);
        origin[i].y = (int)floor(mrect.p.y);
        code = make_mid(&mdev, dev,
                        (int)ceil(mrect.q.x) - origin[i].x,
                        (int)ceil(mrect.q.y) - origin[i].y,
                        penum->mask[i].depth, mem);
        if (code < 0)
            goto out1;
        code = dev_proc(dev, get_profile)(dev, &mdev->icc_struct);
        if (code < 0)
            goto out1;  /* Device not yet open */
        rc_increment(mdev->icc_struct);
        penum->mask[i].mdev = mdev;
        gs_image_t_init(&mask[i].image, pmcs);
        mask[i].image.ColorSpace = pmcs;
        mask[i].image.adjust = false;
        mask[i].image.image_parent_type = gs_image_type3x;
        {
            const gx_image_type_t *type1 = mask[i].image.type;
            const gs_image3x_mask_t *pixm =
                (i == 0 ? &pim->Opacity : &pim->Shape);

            /* Use memcpy because direct assignment breaks ANSI aliasing */
            /* rules and causes SEGV with gcc 4.5.1 */
            memcpy(&mask[i].image, &pixm->MaskDict, sizeof(pixm->MaskDict));
            mask[i].image.type = type1;
            mask[i].image.BitsPerComponent = pixm->MaskDict.BitsPerComponent;
        }
        {
            gs_matrix m_mat;

            /*
             * Adjust the translation for rendering the mask to include a
             * negative translation by origin.{x,y} in device space.
             */
            m_mat = *pmat;
            m_mat.tx -= origin[i].x;
            m_mat.ty -= origin[i].y;
            /*
             * Peter put in a comment that said " Note that pgs = NULL here,
             * since we don't want to have to create another gs_gstate with
             * default log_op, etc." and passed NULL instead of pgs to this
             * routine.  However Image type 1 need the gs_gstate (see
             * bug 688348) thus his optimization was removed.
             * dcolor = NULL is OK because this is an opaque image with
             * CombineWithColor = false.
             */
            code = gx_device_begin_typed_image(mdev, pgs, &m_mat,
                               (const gs_image_common_t *)&mask[i].image,
                                               &mask[i].rect, NULL, NULL,
                                               mem, &penum->mask[i].info);
            if (code < 0)
                goto out2;
        }
        midev[i] = mdev;
        minfo[i] = penum->mask[i].info;
    }
    gs_image_t_init(&pixel.image, pim->ColorSpace);
    {
        const gx_image_type_t *type1 = pixel.image.type;

        *(gs_pixel_image_t *)&pixel.image = *(const gs_pixel_image_t *)pim;
        pixel.image.type = type1;
        pixel.image.image_parent_type = gs_image_type3x;
    }
    code = make_mcde(dev, pgs, pmat, (const gs_image_common_t *)&pixel.image,
                     prect, pdcolor, pcpath, mem, &penum->pixel.info,
                     &pcdev, midev, minfo, origin, pim);
    if (code < 0)
        goto out3;
    penum->pcdev = pcdev;
    /*
     * Set num_planes, plane_widths, and plane_depths from the values in the
     * enumerators for the mask(s) and the image data.
     */
    {
        int added_depth = 0;
        int pi = 0;

        for (i = 0; i < NUM_MASKS; ++i) {
            if (penum->mask[i].depth == 0)	/* no mask */
                continue;
            switch (penum->mask[i].InterleaveType) {
            case interleave_chunky:
                /* Add the mask data to the depth of the image data. */
                added_depth += pim->BitsPerComponent;
                break;
            case interleave_separate_source:
                /* Insert the mask as a separate plane. */
                penum->plane_widths[pi] = penum->mask[i].width;
                penum->plane_depths[pi] = penum->mask[i].depth;
                ++pi;
                break;
            default:		/* can't happen */
                code = gs_note_error(gs_error_Fatal);
                goto out3;
            }
        }
        memcpy(&penum->plane_widths[pi], &penum->pixel.info->plane_widths[0],
               penum->pixel.info->num_planes * sizeof(penum->plane_widths[0]));
        memcpy(&penum->plane_depths[pi], &penum->pixel.info->plane_depths[0],
               penum->pixel.info->num_planes * sizeof(penum->plane_depths[0]));
        penum->plane_depths[pi] += added_depth;
        penum->num_planes = pi + penum->pixel.info->num_planes;
    }
    if (midev[0])
        gx_device_retain(midev[0], true); /* will free explicitly */
    if (midev[1])
        gx_device_retain(midev[1], true); /* ditto */
    gx_device_retain(pcdev, true); /* ditto */
    *pinfo = (gx_image_enum_common_t *) penum;
    return 0;
  out3:
    if (penum->mask[1].info)
        gx_image_end(penum->mask[1].info, false);
    if (penum->mask[0].info)
        gx_image_end(penum->mask[0].info, false);
  out2:
    if (penum->mask[1].mdev) {
        gs_closedevice(penum->mask[1].mdev);
        gs_free_object(mem, penum->mask[1].mdev,
                       "gx_begin_image3x(mask[1].mdev)");
    }
    if (penum->mask[0].mdev) {
        gs_closedevice(penum->mask[0].mdev);
        gs_free_object(mem, penum->mask[0].mdev,
                       "gx_begin_image3x(mask[0].mdev)");
    }
  out1:
    gs_free_object(mem, penum->mask[0].data, "gx_begin_image3x(mask[0].data)");
    gs_free_object(mem, penum->mask[1].data, "gx_begin_image3x(mask[1].data)");
    gs_free_object(mem, penum->pixel.data, "gx_begin_image3x(pixel.data)");
  out0:
    gs_free_object(mem, penum, "gx_begin_image3x");
    return code;
}
static bool
check_image3x_extent(double mask_coeff, double data_coeff)
{
    if (mask_coeff == 0)
        return data_coeff == 0;
    if (data_coeff == 0 || (mask_coeff > 0) != (data_coeff > 0))
        return false;
    return true;
}
/*
 * Check mask parameters.
 * Reads ppcv->{matrix,corner,rect}, sets pmcv->{matrix,corner,rect} and
 * pmcs->{InterleaveType,width,height,full_height,depth,data,y,skip}.
 * If the mask is omitted, sets pmcs->depth = 0 and returns normally.
 */
static bool
check_image3x_mask(const gs_image3x_t *pim, const gs_image3x_mask_t *pimm,
                   const image3x_channel_values_t *ppcv,
                   image3x_channel_values_t *pmcv,
                   image3x_channel_state_t *pmcs, gs_memory_t *mem)
{
    int mask_width = pimm->MaskDict.Width, mask_height = pimm->MaskDict.Height;
    int code;

    if (pimm->MaskDict.BitsPerComponent == 0) { /* mask missing */
        pmcs->depth = 0;
        pmcs->InterleaveType = 0;	/* not a valid type */
        return 0;
    }
    if (mask_height <= 0)
        return_error(gs_error_rangecheck);
    switch (pimm->InterleaveType) {
        /*case interleave_scan_lines:*/	/* not supported */
        default:
            return_error(gs_error_rangecheck);
        case interleave_chunky:
            if (mask_width != pim->Width ||
                mask_height != pim->Height ||
                pimm->MaskDict.BitsPerComponent != pim->BitsPerComponent ||
                pim->format != gs_image_format_chunky
                )
                return_error(gs_error_rangecheck);
            break;
        case interleave_separate_source:
            switch (pimm->MaskDict.BitsPerComponent) {
                    case 1: case 2: case 4: case 8: case 12: case 16:
                break;
            default:
                return_error(gs_error_rangecheck);
            }
    }
    if (!check_image3x_extent(pim->ImageMatrix.xx,
                              pimm->MaskDict.ImageMatrix.xx) ||
        !check_image3x_extent(pim->ImageMatrix.xy,
                              pimm->MaskDict.ImageMatrix.xy) ||
        !check_image3x_extent(pim->ImageMatrix.yx,
                              pimm->MaskDict.ImageMatrix.yx) ||
        !check_image3x_extent(pim->ImageMatrix.yy,
                              pimm->MaskDict.ImageMatrix.yy)
        )
        return_error(gs_error_rangecheck);
    if ((code = gs_matrix_invert(&pimm->MaskDict.ImageMatrix, &pmcv->matrix)) < 0 ||
        (code = gs_point_transform(mask_width, mask_height,
                                   &pmcv->matrix, &pmcv->corner)) < 0
        )
        return code;
    if (fabs(ppcv->matrix.tx - pmcv->matrix.tx) >= 0.5 ||
        fabs(ppcv->matrix.ty - pmcv->matrix.ty) >= 0.5 ||
        fabs(ppcv->corner.x - pmcv->corner.x) >= 0.5 ||
        fabs(ppcv->corner.y - pmcv->corner.y) >= 0.5
        )
        return_error(gs_error_rangecheck);
    pmcv->rect.p.x = ppcv->rect.p.x * mask_width / pim->Width;
    pmcv->rect.p.y = ppcv->rect.p.y * mask_height / pim->Height;
    pmcv->rect.q.x = (ppcv->rect.q.x * mask_width + pim->Width - 1) /
        pim->Width;
    pmcv->rect.q.y = (ppcv->rect.q.y * mask_height + pim->Height - 1) /
        pim->Height;
    /* Initialize the channel state in the enumerator. */
    pmcs->InterleaveType = pimm->InterleaveType;
    pmcs->width = pmcv->rect.q.x - pmcv->rect.p.x;
    pmcs->height = pmcv->rect.q.y - pmcv->rect.p.y;
    pmcs->full_height = pimm->MaskDict.Height;
    pmcs->depth = pimm->MaskDict.BitsPerComponent;
    if (pmcs->InterleaveType == interleave_chunky) {
        /* Allocate a buffer for the data. */
        pmcs->data =
            gs_alloc_bytes(mem,
                           (pmcs->width * pimm->MaskDict.BitsPerComponent + 7) >> 3,
                           "gx_begin_image3x(mask data)");
        if (pmcs->data == 0)
            return_error(gs_error_VMerror);
    }
    pmcs->y = pmcs->skip = 0;
    return 0;
}

/*
 * Return > 0 if we want more data from channel 1 now, < 0 if we want more
 * from channel 2 now, 0 if we want both.
 */
static int
channel_next(const image3x_channel_state_t *pics1,
             const image3x_channel_state_t *pics2)
{
    /*
     * The invariant we need to maintain is that we always have at least as
     * much channel N as channel N+1 data, where N = 0 = opacity, 1 = shape,
     * and 2 = pixel.  I.e., for any two consecutive channels c1 and c2, we
     * require c1.y / c1.full_height >= c2.y / c2.full_height, or, to avoid
     * floating point, c1.y * c2.full_height >= c2.y * c1.full_height.  We
     * know this condition is true now; return a value that indicates how to
     * maintain it.
     */
    int h1 = pics1->full_height;
    int h2 = pics2->full_height;
    long current = pics1->y * (long)h2 - pics2->y * (long)h1;

#ifdef DEBUG
    if (current < 0)
        lprintf4("channel_next invariant fails: %d/%d < %d/%d\n",
                 pics1->y, pics1->full_height,
                 pics2->y, pics2->full_height);
#endif
    return ((current -= h1) >= 0 ? -1 :
            current + h2 >= 0 ? 0 : 1);
}

/* Define the default implementation of ImageType 3 processing. */
static IMAGE3X_MAKE_MID_PROC(make_midx_default); /* check prototype */
static int
make_midx_default(gx_device **pmidev, gx_device *dev, int width, int height,
                 int depth, gs_memory_t *mem)
{
    const gx_device_memory *mdproto = gdev_mem_device_for_bits(depth);
    gx_device_memory *midev;
    int code;

    if (width != 0)
        if (height > max_ulong/width)	/* protect against overflow in bitmap size */
            return_error(gs_error_VMerror);
    if (mdproto == 0)
        return_error(gs_error_rangecheck);
    midev = gs_alloc_struct(mem, gx_device_memory, &st_device_memory,
                            "make_mid_default");
    if (midev == 0)
        return_error(gs_error_VMerror);
    gs_make_mem_device(midev, mdproto, mem, 0, NULL);
    midev->bitmap_memory = mem;
    midev->width = width;
    midev->height = height;
    check_device_separable((gx_device *)midev);
    gx_device_fill_in_procs((gx_device *)midev);
    code = dev_proc(midev, open_device)((gx_device *)midev);
    if (code < 0) {
        gs_free_object(mem, midev, "make_midx_default");
        return code;
    }
    midev->is_open = true;
    dev_proc(midev, fill_rectangle)
        ((gx_device *)midev, 0, 0, width, height, (gx_color_index)0);
    *pmidev = (gx_device *)midev;
    return 0;
}
static IMAGE3X_MAKE_MCDE_PROC(make_mcdex_default);  /* check prototype */
static int
make_mcdex_default(gx_device *dev, const gs_gstate *pgs,
                   const gs_matrix *pmat, const gs_image_common_t *pic,
                   const gs_int_rect *prect, const gx_drawing_color *pdcolor,
                   const gx_clip_path *pcpath, gs_memory_t *mem,
                   gx_image_enum_common_t **pinfo,
                   gx_device **pmcdev, gx_device *midev[2],
                   gx_image_enum_common_t *pminfo[2],
                   const gs_int_point origin[2],
                   const gs_image3x_t *pim)
{
    /**************** NYI ****************/
    /*
     * There is no soft-mask analogue of make_mcde_default, because
     * soft-mask clipping is a more complicated operation, implemented
     * by the general transparency code.  As a default, we simply ignore
     * the soft mask.  However, we have to create an intermediate device
     * that can be freed at the end and that simply forwards all calls.
     * The most convenient device for this purpose is the bbox device.
     */
    gx_device_bbox *bbdev;
    int code;
    cmm_dev_profile_t *icc_struct;

    code = dev_proc(dev, get_profile)(dev, &icc_struct);
    if (code < 0) {
        return(code);
    }

    bbdev = gs_alloc_struct_immovable(mem, gx_device_bbox, &st_device_bbox,
                                  "make_mcdex_default");

    if (bbdev == 0)
        return_error(gs_error_VMerror);

    gx_device_bbox_init(bbdev, dev, mem);

    bbdev->icc_struct = icc_struct;
    rc_increment(bbdev->icc_struct);

    gx_device_bbox_fwd_open_close(bbdev, false);
    code = dev_proc(bbdev, begin_typed_image)
        ((gx_device *)bbdev, pgs, pmat, pic, prect, pdcolor, pcpath, mem,
         pinfo);
    if (code < 0) {
        gs_free_object(mem, bbdev, "make_mcdex_default");
        return code;
    }
    *pmcdev = (gx_device *)bbdev;
    return 0;
}
static int
gx_begin_image3x(gx_device * dev,
                const gs_gstate * pgs, const gs_matrix * pmat,
                const gs_image_common_t * pic, const gs_int_rect * prect,
                const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
                gs_memory_t * mem, gx_image_enum_common_t ** pinfo)
{
    return gx_begin_image3x_generic(dev, pgs, pmat, pic, prect, pdcolor,
                                    pcpath, mem, make_midx_default,
                                    make_mcdex_default, pinfo);
}

/* Process the next piece of an ImageType 3 image. */
static int
gx_image3x_plane_data(gx_image_enum_common_t * info,
                     const gx_image_plane_t * planes, int height,
                     int *rows_used)
{
    gx_image3x_enum_t *penum = (gx_image3x_enum_t *) info;
    int pixel_height = penum->pixel.height;
    int pixel_used = 0;
    int mask_height[2];
    int mask_used[2];
    int h1 = pixel_height - penum->pixel.y;
    int h;
    const gx_image_plane_t *pixel_planes;
    gx_image_plane_t pixel_plane, mask_plane[2];
    int code = 0;
    int i, pi = 0;
    int num_chunky = 0;

    for (i = 0; i < NUM_MASKS; ++i) {
        int mh = mask_height[i] = penum->mask[i].height;

        mask_plane[i].data = 0;
        mask_plane[i].raster = 0;
        mask_used[i] = 0;
        if (!penum->mask[i].depth)
            continue;
        h1 = min(h1, ((mh > penum->mask[i].y) ? (mh - penum->mask[i].y) : mh));
        if (penum->mask[i].InterleaveType == interleave_chunky)
            ++num_chunky;
    }
    h = min(height, h1);
    /* Initialized rows_used in case we get an error. */
    *rows_used = 0;

    if (h <= 0)
        return 0;

    /* Handle masks from separate sources. */
    for (i = 0; i < NUM_MASKS; ++i)
        if (penum->mask[i].InterleaveType == interleave_separate_source) {
            /*
             * In order to be able to recover from interruptions, we must
             * limit separate-source processing to 1 scan line at a time.
             */
            if (h > 1)
                h = 1;
            mask_plane[i] = planes[pi++];
        }
    pixel_planes = &planes[pi];

    /* Handle chunky masks. */
    if (num_chunky) {
        int bpc = penum->bpc;
        int num_components = penum->num_components;
        int width = penum->pixel.width;
        /* Pull apart the source data and the mask data. */
        /* We do this in the simplest (not fastest) way for now. */
        uint bit_x = bpc * (num_components + num_chunky) * planes[pi].data_x;
        const byte *sptr = planes[0].data + (bit_x >> 3);
        int sbit = bit_x & 7;
        byte *pptr = penum->pixel.data;
        int pbit = 0;
        byte pbbyte = (pbit ? (byte)(*pptr & (0xff00 >> pbit)) : 0);
        byte *dptr[NUM_MASKS];
        int dbit[NUM_MASKS];
        byte dbbyte[NUM_MASKS];
        int depth[NUM_MASKS];
        int x;

        if (h > 1) {
            /* Do the operation one row at a time. */
            h = 1;
        }
        for (i = 0; i < NUM_MASKS; ++i)
            if (penum->mask[i].data) {
                depth[i] = penum->mask[i].depth;
                mask_plane[i].data = dptr[i] = penum->mask[i].data;
                mask_plane[i].data_x = 0;
                /* raster doesn't matter */
                dbit[i] = 0;
                dbbyte[i] = 0;
            } else
                depth[i] = 0;
        pixel_plane.data = pptr;
        pixel_plane.data_x = 0;
        /* raster doesn't matter */
        pixel_planes = &pixel_plane;
        for (x = 0; x < width; ++x) {
            uint value;

            for (i = 0; i < NUM_MASKS; ++i)
                if (depth[i]) {
                    if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0)
                        return_error(gs_error_rangecheck);
                    if (sample_store_next12(value, &dptr[i], &dbit[i], depth[i],
                                        &dbbyte[i]) < 0)
                        return_error(gs_error_rangecheck);
                }
            for (i = 0; i < num_components; ++i) {
                if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0)
                    return_error(gs_error_rangecheck);
                if (sample_store_next12(value, &pptr, &pbit, bpc, &pbbyte) < 0)
                    return_error(gs_error_rangecheck);
            }
        }
        for (i = 0; i < NUM_MASKS; ++i)
            if (penum->mask[i].data) {
                sample_store_flush(dptr[i], dbit[i], dbbyte[i]);
            }
        sample_store_flush(pptr, pbit, pbbyte);
        }
    /*
     * Process the mask data first, so it will set up the mask
     * device for clipping the pixel data.
     */
    for (i = 0; i < NUM_MASKS; ++i)
        if (mask_plane[i].data) {
            /*
             * If, on the last call, we processed some mask rows
             * successfully but processing the pixel rows was interrupted,
             * we set rows_used to indicate the number of pixel rows
             * processed (since there is no way to return two rows_used
             * values).  If this happened, some mask rows may get presented
             * again.  We must skip over them rather than processing them
             * again.
             */
            int skip = penum->mask[i].skip;

            if (skip >= h) {
                penum->mask[i].skip = skip - (mask_used[i] = h);
            } else {
                int mask_h = h - skip;

                mask_plane[i].data += skip * mask_plane[i].raster;
                penum->mask[i].skip = 0;
                code = gx_image_plane_data_rows(penum->mask[i].info,
                                                &mask_plane[i],
                                                mask_h, &mask_used[i]);
                mask_used[i] += skip;
            }
            *rows_used = mask_used[i];
            penum->mask[i].y += mask_used[i];
            if (code < 0)
                return code;
        }
    if (pixel_planes[0].data) {
        /*
         * If necessary, flush any buffered mask data to the mask clipping
         * device.
         */
        for (i = 0; i < NUM_MASKS; ++i)
            if (penum->mask[i].info)
                gx_image_flush(penum->mask[i].info);
        code = gx_image_plane_data_rows(penum->pixel.info, pixel_planes, h,
                                        &pixel_used);
        /*
         * There isn't any way to set rows_used if different amounts of
         * the mask and pixel data were used.  Fake it.
         */
        *rows_used = pixel_used;
        /*
         * Don't return code yet: we must account for the fact that
         * some mask data may have been processed.
         */
        penum->pixel.y += pixel_used;
        if (code < 0) {
            /*
             * We must prevent the mask data from being processed again.
             * We rely on the fact that h > 1 is only possible if the
             * mask and pixel data have the same Y scaling.
             */
            for (i = 0; i < NUM_MASKS; ++i)
                if (mask_used[i] > pixel_used) {
                    int skip = mask_used[i] - pixel_used;

                    penum->mask[i].skip = skip;
                    penum->mask[i].y -= skip;
                    mask_used[i] = pixel_used;
                }
        }
    }
    if_debug7m('b', penum->memory,
               "[b]image3x h=%d %sopacity.y=%d %sopacity.y=%d %spixel.y=%d\n",
               h, (mask_plane[0].data ? "+" : ""), penum->mask[0].y,
               (mask_plane[1].data ? "+" : ""), penum->mask[1].y,
               (pixel_planes[0].data ? "+" : ""), penum->pixel.y);
    if (penum->mask[0].depth == 0 || penum->mask[0].y >= penum->mask[0].height) {
        if (penum->mask[1].depth == 0 || penum->mask[1].y >= penum->mask[1].height) {
            if (penum->pixel.y >= penum->pixel.height) {
                return 1;
            }
        }
    }
    /*
     * The mask may be complete (gx_image_plane_data_rows returned 1),
     * but there may still be pixel rows to go, so don't return 1 here.
     */
    return (code < 0 ? code : 0);
}

/* Flush buffered data. */
static int
gx_image3x_flush(gx_image_enum_common_t * info)
{
    gx_image3x_enum_t * const penum = (gx_image3x_enum_t *) info;
    int code = gx_image_flush(penum->mask[0].info);

    if (code >= 0)
        code = gx_image_flush(penum->mask[1].info);
    if (code >= 0)
        code = gx_image_flush(penum->pixel.info);
    return code;
}

/* Determine which data planes are wanted. */
static bool
gx_image3x_planes_wanted(const gx_image_enum_common_t * info, byte *wanted)
{
    const gx_image3x_enum_t * const penum = (const gx_image3x_enum_t *) info;
    /*
     * We always want at least as much of the mask(s) to be filled as the
     * pixel data.
     */
    bool
        sso = penum->mask[0].InterleaveType == interleave_separate_source,
        sss = penum->mask[1].InterleaveType == interleave_separate_source;

    if (sso & sss) {
        /* Both masks have separate sources. */
        int mask_next = channel_next(&penum->mask[1], &penum->pixel);

        memset(wanted + 2, (mask_next <= 0 ? 0xff : 0), info->num_planes - 2);
        wanted[1] = (mask_next >= 0 ? 0xff : 0);
        if (wanted[1]) {
            mask_next = channel_next(&penum->mask[0], &penum->mask[1]);
            wanted[0] = mask_next >= 0;
        } else
            wanted[0] = 0;
        return false;		/* see below */
    } else if (sso | sss) {
        /* Only one separate source. */
        const image3x_channel_state_t *pics =
            (sso ? &penum->mask[0] : &penum->mask[1]);
        int mask_next = channel_next(pics, &penum->pixel);

        wanted[0] = (mask_next >= 0 ? 0xff : 0);
        memset(wanted + 1, (mask_next <= 0 ? 0xff : 0), info->num_planes - 1);
        /*
         * In principle, wanted will always be true for both mask and pixel
         * data if the full_heights are equal.  Unfortunately, even in this
         * case, processing may be interrupted after a mask row has been
         * passed to the underlying image processor but before the data row
         * has been passed, in which case pixel data will be 'wanted', but
         * not mask data, for the next call.  Therefore, we must return
         * false.
         */
        return false
            /*(next == 0 &&
              pics->full_height == penum->pixel.full_height)*/;
    } else {
        /* Everything is chunky, only 1 plane. */
        wanted[0] = 0xff;
        return true;
    }
}

/* Clean up after processing an ImageType 3x image. */
static int
gx_image3x_end_image(gx_image_enum_common_t * info, bool draw_last)
{
    gx_image3x_enum_t *penum = (gx_image3x_enum_t *) info;
    gs_memory_t *mem = penum->memory;
    gx_device *mdev0 = penum->mask[0].mdev;
    int ocode =
        (penum->mask[0].info ? gx_image_end(penum->mask[0].info, draw_last) :
         0);
    gx_device *mdev1 = penum->mask[1].mdev;
    int scode =
        (penum->mask[1].info ? gx_image_end(penum->mask[1].info, draw_last) :
         0);
    gx_device *pcdev = penum->pcdev;
    int pcode = gx_image_end(penum->pixel.info, draw_last);

    rc_decrement(pcdev->icc_struct, "gx_image3x_end_image(pcdev->icc_struct)");
    pcdev->icc_struct = NULL;

    gs_closedevice(pcdev);
    if (mdev0)
        gs_closedevice(mdev0);
    if (mdev1)
        gs_closedevice(mdev1);
    gs_free_object(mem, penum->mask[0].data,
                   "gx_image3x_end_image(mask[0].data)");
    gs_free_object(mem, penum->mask[1].data,
                   "gx_image3x_end_image(mask[1].data)");
    gs_free_object(mem, penum->pixel.data,
                   "gx_image3x_end_image(pixel.data)");
    gs_free_object(mem, pcdev, "gx_image3x_end_image(pcdev)");
    gs_free_object(mem, mdev0, "gx_image3x_end_image(mask[0].mdev)");
    gs_free_object(mem, mdev1, "gx_image3x_end_image(mask[1].mdev)");
    gx_image_free_enum(&info);
    return (pcode < 0 ? pcode : scode < 0 ? scode : ocode);
}