1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
/* Copyright (C) 2001-2020 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Conversion between device color spaces for Ghostscript */
#include "gx.h"
#include "gsdcolor.h" /* for gxcmap.h */
#include "gxdcconv.h" /* interface */
#include "gxdevice.h" /* for gxcmap.h */
#include "gxcmap.h"
#include "gxfarith.h"
#include "gxlum.h"
#include "gxgstate.h"
#include "gsstate.h" /* for gs_currentcpsimode */
/*
* The CMYK to RGB algorithms specified by Adobe are, e.g.,
* R = 1.0 - min(1.0, C + K)
* C = max(0.0, min(1.0, 1 - R - UCR))
* We got better results on displays with
* R = (1.0 - C) * (1.0 - K)
* C = max(0.0, min(1.0, 1 - R / (1 - UCR)))
* For PLRM compatibility, we use the Adobe algorithms by default,
* but what Adobe says and what they do are two different things.
* Testing on CPSI shows that they use the 'better' algorithm.
*/
/* ------ Color space conversion ------ */
/* Only 4 of the 6 conversions are implemented here; */
/* the other 2 (Gray to RGB/CMYK) are trivial. */
/* Convert RGB to Gray. */
frac
color_rgb_to_gray(frac r, frac g, frac b, const gs_gstate * pgs)
{
return (r * (unsigned long)lum_red_weight +
g * (unsigned long)lum_green_weight +
b * (unsigned long)lum_blue_weight +
(lum_all_weights / 2))
/ lum_all_weights;
}
/* Convert RGB to CMYK. */
/* Note that this involves black generation and undercolor removal. */
void
color_rgb_to_cmyk(frac r, frac g, frac b, const gs_gstate * pgs,
frac cmyk[4], gs_memory_t *mem)
{
frac c = frac_1 - r, m = frac_1 - g, y = frac_1 - b;
frac k = (c < m ? min(c, y) : min(m, y));
/*
* The default UCR and BG functions are pretty arbitrary,
* but they must agree with the ones in gs_init.ps.
*/
frac bg =
(pgs == NULL ? k : pgs->black_generation == NULL ? frac_0 :
gx_map_color_frac(pgs, k, black_generation));
signed_frac ucr =
(pgs == NULL ? k : pgs->undercolor_removal == NULL ? frac_0 :
gx_map_color_frac(pgs, k, undercolor_removal));
if (ucr == frac_1)
cmyk[0] = cmyk[1] = cmyk[2] = 0;
else if (ucr == frac_0)
cmyk[0] = c, cmyk[1] = m, cmyk[2] = y;
else {
if (!gs_currentcpsimode(mem)) {
/* C = max(0.0, min(1.0, 1 - R - UCR)), etc. */
signed_frac not_ucr = (ucr < 0 ? frac_1 + ucr : frac_1);
cmyk[0] = (c < ucr ? frac_0 : c > not_ucr ? frac_1 : c - ucr);
cmyk[1] = (m < ucr ? frac_0 : m > not_ucr ? frac_1 : m - ucr);
cmyk[2] = (y < ucr ? frac_0 : y > not_ucr ? frac_1 : y - ucr);
} else {
/* Adobe CPSI method */
/* C = max(0.0, min(1.0, 1 - R / (1 - UCR))), etc. */
float denom = frac2float(frac_1 - ucr); /* unscaled */
float v;
v = (float)frac_1 - r / denom; /* unscaled */
cmyk[0] =
(is_fneg(v) ? frac_0 : v >= (float)frac_1 ? frac_1 : (frac) v);
v = (float)frac_1 - g / denom; /* unscaled */
cmyk[1] =
(is_fneg(v) ? frac_0 : v >= (float)frac_1 ? frac_1 : (frac) v);
v = (float)frac_1 - b / denom; /* unscaled */
cmyk[2] =
(is_fneg(v) ? frac_0 : v >= (float)frac_1 ? frac_1 : (frac) v);
}
}
cmyk[3] = bg;
if_debug7m('c', mem, "[c]RGB 0x%x,0x%x,0x%x -> CMYK 0x%x,0x%x,0x%x,0x%x\n",
r, g, b, cmyk[0], cmyk[1], cmyk[2], cmyk[3]);
}
/* Convert CMYK to Gray. */
frac
color_cmyk_to_gray(frac c, frac m, frac y, frac k, const gs_gstate * pgs)
{
frac not_gray = color_rgb_to_gray(c, m, y, pgs);
return (not_gray > frac_1 - k ? /* gray + k > 1.0 */
frac_0 : frac_1 - (not_gray + k));
}
/* Convert CMYK to RGB. */
void
color_cmyk_to_rgb(frac c, frac m, frac y, frac k, const gs_gstate * pgs,
frac rgb[3], gs_memory_t *mem)
{
switch (k) {
case frac_0:
rgb[0] = frac_1 - c;
rgb[1] = frac_1 - m;
rgb[2] = frac_1 - y;
break;
case frac_1:
rgb[0] = rgb[1] = rgb[2] = frac_0;
break;
default:
if (!gs_currentcpsimode(mem)) {
/* R = 1.0 - min(1.0, C + K), etc. */
frac not_k = frac_1 - k;
rgb[0] = (c > not_k ? frac_0 : not_k - c);
rgb[1] = (m > not_k ? frac_0 : not_k - m);
rgb[2] = (y > not_k ? frac_0 : not_k - y);
} else {
/* R = (1.0 - C) * (1.0 - K), etc. */
ulong not_k = frac_1 - k;
/* Compute not_k * (frac_1 - v) / frac_1 efficiently. */
ulong prod;
#define deduct_black(v)\
(prod = (frac_1 - (v)) * not_k, frac_1_quo(prod))
rgb[0] = deduct_black(c);
rgb[1] = deduct_black(m);
rgb[2] = deduct_black(y);
#undef deduct_black
}
}
if_debug7m('c', mem, "[c]CMYK 0x%x,0x%x,0x%x,0x%x -> RGB 0x%x,0x%x,0x%x\n",
c, m, y, k, rgb[0], rgb[1], rgb[2]);
}
|