1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
|
/* Copyright (C) 2001-2020 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* CIE color rendering */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxcspace.h" /* for gxcie.c */
#include "gxarith.h"
#include "gxcie.h"
#include "gxdevice.h" /* for gxcmap.h */
#include "gxcmap.h"
#include "gxgstate.h"
#include "gscolor2.h"
#include "gsicc_create.h" /* Needed for delayed creation of ICC profiles from CIE color spaces */
#include "gsicc_manage.h"
#include "gsicc.h"
#include "gscspace.h"
/*
* Compute a cache index as (vin - base) * factor.
* vin, base, factor, and the result are cie_cached_values.
* We know that the result doesn't exceed (gx_cie_cache_size - 1) << fbits.
*
* Since this operation is extremely time-critical, we don't rely on the
* compiler providing 'inline'.
*/
#define LOOKUP_INDEX_(vin, pcache, fbits)\
(cie_cached_value)\
((vin) <= (pcache)->vecs.params.base ? 0 :\
(vin) >= (pcache)->vecs.params.limit ? (gx_cie_cache_size - 1) << (fbits) :\
cie_cached_product2int( ((vin) - (pcache)->vecs.params.base),\
(pcache)->vecs.params.factor, fbits ))
#define LOOKUP_ENTRY_(vin, pcache)\
(&(pcache)->vecs.values[(int)LOOKUP_INDEX(vin, pcache, 0)])
#ifdef DEBUG
static cie_cached_value
LOOKUP_INDEX(cie_cached_value vin, const gx_cie_vector_cache *pcache,
int fbits)
{
return LOOKUP_INDEX_(vin, pcache, fbits);
}
static const cie_cached_vector3 *
LOOKUP_ENTRY(cie_cached_value vin, const gx_cie_vector_cache *pcache)
{
return LOOKUP_ENTRY_(vin, pcache);
}
#else /* !DEBUG */
# define LOOKUP_INDEX(vin, pcache, fbits) LOOKUP_INDEX_(vin, pcache, fbits)
# define LOOKUP_ENTRY(vin, pcache) LOOKUP_ENTRY_(vin, pcache)
#endif /* DEBUG */
/*
* Call the remap_finish procedure in the structure without going through
* the extra level of procedure.
*/
#ifdef DEBUG
# define GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs)\
gx_cie_remap_finish(vec3, pconc, cie_xyz, pgs, pcs)
#else
# define GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs)\
((pgs)->cie_joint_caches->remap_finish(vec3, pconc, cie_xyz, pgs, pcs))
#endif
/* Forward references */
static void cie_lookup_mult3(cie_cached_vector3 *,
const gx_cie_vector_cache3_t *);
#ifdef DEBUG
static void
cie_lookup_map3(cie_cached_vector3 * pvec,
const gx_cie_vector_cache3_t * pc, const char *cname)
{
if_debug5('c', "[c]lookup %s "PRI_INTPTR" [%g %g %g]\n",
(const char *)cname, (intptr_t)pc,
cie_cached2float(pvec->u), cie_cached2float(pvec->v),
cie_cached2float(pvec->w));
cie_lookup_mult3(pvec, pc);
if_debug3('c', " =[%g %g %g]\n",
cie_cached2float(pvec->u), cie_cached2float(pvec->v),
cie_cached2float(pvec->w));
}
#else
# define cie_lookup_map3(pvec, pc, cname) cie_lookup_mult3(pvec, pc)
#endif
/* Check used for internal ranges to determine if we need to create a
CLUT for the ICC profile and if we need to rescale the incoming
CIE data.*/
bool
check_range(gs_range *ranges, int num_colorants)
{
int k;
for (k = 0; k < num_colorants; k++) {
if (ranges[k].rmin != 0) return false;
if (ranges[k].rmax != 1) return false;
}
return true;
}
/* Returns false if range is not 0 1 */
bool
check_cie_range(const gs_color_space * pcs)
{
switch(gs_color_space_get_index(pcs)) {
case gs_color_space_index_CIEDEFG:
return check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4) ;
case gs_color_space_index_CIEDEF:
return check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3);
case gs_color_space_index_CIEABC:
return check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3);
case gs_color_space_index_CIEA:
return check_range(&(pcs->params.a->RangeA), 1);
default:
return true;
}
}
gs_range*
get_cie_range(const gs_color_space * pcs)
{
switch(gs_color_space_get_index(pcs)) {
case gs_color_space_index_CIEDEFG:
return &(pcs->params.defg->RangeDEFG.ranges[0]);
case gs_color_space_index_CIEDEF:
return &(pcs->params.def->RangeDEF.ranges[0]);
case gs_color_space_index_CIEABC:
return &(pcs->params.abc->RangeABC.ranges[0]);
case gs_color_space_index_CIEA:
return &(pcs->params.a->RangeA);
default:
return NULL;
}
}
static void
rescale_input_color(gs_range *ranges, int num_colorants,
const gs_client_color *src, gs_client_color *des)
{
int k;
for (k = 0; k < num_colorants; k++) {
des->paint.values[k] = (src->paint.values[k] - ranges[k].rmin) /
(ranges[k].rmax - ranges[k].rmin);
}
}
/* Returns true if rescale was done */
bool
rescale_cie_colors(const gs_color_space * pcs, gs_client_color *cc)
{
int num, k;
gs_range *ranges;
if (!check_cie_range(pcs)) {
switch(gs_color_space_get_index(pcs)) {
case gs_color_space_index_CIEDEFG:
num = 4;
ranges = &(pcs->params.defg->RangeDEFG.ranges[0]);
break;
case gs_color_space_index_CIEDEF:
num = 3;
ranges = &(pcs->params.def->RangeDEF.ranges[0]);
break;
case gs_color_space_index_CIEABC:
num = 3;
ranges = &(pcs->params.abc->RangeABC.ranges[0]);
break;
case gs_color_space_index_CIEA:
num = 1;
ranges = &(pcs->params.a->RangeA);
break;
default:
return false;
}
for (k = 0; k < num; k++) {
cc->paint.values[k] = (cc->paint.values[k] - ranges[k].rmin) /
(ranges[k].rmax - ranges[k].rmin);
}
return true;
}
return false;
}
/*
* Test whether a CIE rendering has been defined; ensure that the joint
* caches are loaded. Note that the procedure may return 1 if no rendering
* has been defined. The 'cie_to_xyz' flag indicates that we don't need a CRD
*/
static inline int
gx_cie_check_rendering_inline(const gs_color_space * pcs, frac * pconc, const gs_gstate * pgs)
{
if (pgs->cie_render == 0 && !pgs->cie_to_xyz) {
/* No rendering has been defined yet: return black. */
pconc[0] = pconc[1] = pconc[2] = frac_0;
return 1;
}
if (pgs->cie_joint_caches->status == CIE_JC_STATUS_COMPLETED) {
if (pgs->cie_joint_caches->cspace_id != pcs->id)
pgs->cie_joint_caches->status = CIE_JC_STATUS_BUILT;
}
if (pgs->cie_render && pgs->cie_joint_caches->status != CIE_JC_STATUS_COMPLETED) {
int code = gs_cie_jc_complete(pgs, pcs);
if (code < 0)
return code;
}
return 0;
}
int
gx_cie_check_rendering(const gs_color_space * pcs, frac * pconc, const gs_gstate * pgs)
{
return gx_cie_check_rendering_inline(pcs, pconc, pgs);
}
/* Common code shared between remap and concretize for defg */
static int
gx_ciedefg_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory)
{
int code = 0;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]);
gx_cie_scalar_cache *defg_caches = &(pcs->params.defg->caches_defg.DecodeDEFG[0]);
if_debug0m(gs_debug_flag_icc, memory,
"[icc] Creating ICC profile from defg object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC color space");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_fromdefg(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
abc_caches, lmn_caches, defg_caches);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_DEFG;
pcs->icc_equivalent = *ppcs_icc;
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsCMYK;
return 0;
}
int
gx_remap_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gs_color_space *pcs_icc;
int code, i;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug4m('c', pgs->memory, "[c]remap CIEDEFG [%g %g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2], pc->paint.values[3]);
/* If we are comming in here then we have not completed
the conversion of the DEFG space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedefg_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.defg->RangeDEFG.ranges[0]), 4, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
for (i = 0; i < 4; i++)
pdc->ccolor.paint.values[i] = pc->paint.values[i];
pdc->ccolor_valid = true;
return code;
}
/* Render a CIEBasedDEFG color. */
int
gx_concretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
int code;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug4m('c', pgs->memory, "[c]concretize DEFG [%g %g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2], pc->paint.values[3]);
/* If we are comming in here then we have not completed
the conversion of the DEFG space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedefg_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.defg->RangeDEFG.ranges[0]), 4, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Used for when we have to mash entire transform to CIEXYZ */
int
gx_psconcretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_a *pcie = pcs->params.a;
cie_cached_value a = float2cie_cached(pc->paint.values[0]);
cie_cached_vector3 vlmn;
int code;
if_debug1m('c', pgs->memory, "[c]concretize CIEA %g\n", pc->paint.values[0]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
/* Apply DecodeA and MatrixA. */
if (!pgs->cie_joint_caches->skipDecodeABC)
vlmn = *LOOKUP_ENTRY(a, &pcie->caches.DecodeA);
else
vlmn.u = vlmn.v = vlmn.w = a;
GX_CIE_REMAP_FINISH(vlmn, pconc, cie_xyz, pgs, pcs);
return 0;
}
/* Used for when we have to mash entire transform to CIEXYZ */
int
gx_psconcretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_abc *pcie = pcs->params.abc;
cie_cached_vector3 vec3;
int code;
if_debug3m('c', pgs->memory, "[c]concretize CIEABC [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
vec3.u = float2cie_cached(pc->paint.values[0]);
vec3.v = float2cie_cached(pc->paint.values[1]);
vec3.w = float2cie_cached(pc->paint.values[2]);
if (!pgs->cie_joint_caches->skipDecodeABC)
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
"Decode/MatrixABC");
GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs);
return 0;
}
/* Used for when we have to mash entire transform to CIEXYZ */
int
gx_psconcretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_defg *pcie = pcs->params.defg;
int i;
fixed hijk[4];
frac abc[3];
cie_cached_vector3 vec3;
int code;
if_debug4m('c', pgs->memory, "[c]concretize DEFG [%g %g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2], pc->paint.values[3]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
/*
* Apply DecodeDEFG, including restriction to RangeHIJK and scaling to
* the Table dimensions.
*/
for (i = 0; i < 4; ++i) {
int tdim = pcie->Table.dims[i] - 1;
double factor = pcie->caches_defg.DecodeDEFG[i].floats.params.factor;
double v0 = pc->paint.values[i];
const gs_range *const rangeDEFG = &pcie->RangeDEFG.ranges[i];
double value =
(v0 < rangeDEFG->rmin ? 0.0 : factor *
(v0 > rangeDEFG->rmax ? rangeDEFG->rmax - rangeDEFG->rmin :
v0 - rangeDEFG->rmin ));
int vi = (int)value;
double vf = value - vi;
double v = pcie->caches_defg.DecodeDEFG[i].floats.values[vi];
if (vf != 0 && vi < factor)
v += vf *
(pcie->caches_defg.DecodeDEFG[i].floats.values[vi + 1] - v);
v = (v < 0 ? 0 : v > tdim ? tdim : v);
hijk[i] = float2fixed(v);
}
/* Apply Table. */
gx_color_interpolate_linear(hijk, &pcie->Table, abc);
#define SCALE_TO_RANGE(range, frac) ( \
float2cie_cached(((range).rmax - (range).rmin) * frac2float(frac) + \
(range).rmin) \
)
/* Scale the abc[] frac values to RangeABC cie_cached result */
vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]);
vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]);
vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]);
/* Apply DecodeABC and MatrixABC. */
if (!pgs->cie_joint_caches->skipDecodeABC)
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
"Decode/MatrixABC");
GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs);
return 0;
}
/* Render a CIEBasedDEF color. */
int
gx_psconcretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_def *pcie = pcs->params.def;
int i;
fixed hij[3];
frac abc[3];
cie_cached_vector3 vec3;
int code;
if_debug3m('c', pgs->memory, "[c]concretize DEF [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
/*
* Apply DecodeDEF, including restriction to RangeHIJ and scaling to
* the Table dimensions.
*/
for (i = 0; i < 3; ++i) {
int tdim = pcie->Table.dims[i] - 1;
double factor = pcie->caches_def.DecodeDEF[i].floats.params.factor;
double v0 = pc->paint.values[i];
const gs_range *const rangeDEF = &pcie->RangeDEF.ranges[i];
double value =
(v0 < rangeDEF->rmin ? 0.0 : factor *
(v0 > rangeDEF->rmax ? rangeDEF->rmax - rangeDEF->rmin :
v0 - rangeDEF->rmin ));
int vi = (int)value;
double vf = value - vi;
double v = pcie->caches_def.DecodeDEF[i].floats.values[vi];
if (vf != 0 && vi < factor)
v += vf *
(pcie->caches_def.DecodeDEF[i].floats.values[vi + 1] - v);
v = (v < 0 ? 0 : v > tdim ? tdim : v);
hij[i] = float2fixed(v);
}
/* Apply Table. */
gx_color_interpolate_linear(hij, &pcie->Table, abc);
/* Scale the abc[] frac values to RangeABC cie_cached result */
vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]);
vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]);
vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]);
/* Apply DecodeABC and MatrixABC. */
if (!pgs->cie_joint_caches->skipDecodeABC)
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
"Decode/MatrixABC");
GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs);
return 0;
}
#undef SCALE_TO_RANGE
/* Common code shared between remap and concretize for def */
static int
gx_ciedef_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory)
{
int code;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]);
gx_cie_scalar_cache *def_caches = &(pcs->params.def->caches_def.DecodeDEF[0]);
if_debug0(gs_debug_flag_icc,"[icc] Creating ICC profile from def object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC color space");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_fromdef(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
abc_caches, lmn_caches, def_caches);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_DEF;
/* Assign to the icc_equivalent member variable */
pcs->icc_equivalent = *ppcs_icc;
/* Bug 699104. The ICC profile is built to be RGB based. Reflect that here */
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsRGB;
return 0;
}
int
gx_remap_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gs_color_space *pcs_icc;
gs_client_color scale_pc;
int i,code;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug3m('c', pgs->memory, "[c]remap CIEDEF [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the DEF space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedef_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.def->RangeDEF.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
for (i = 0; i < 3; i++)
pdc->ccolor.paint.values[i] = pc->paint.values[i];
pdc->ccolor_valid = true;
return code;
}
/* Render a CIEBasedDEF color. */
int
gx_concretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
int code = 0;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug3m('c', pgs->memory, "[c]concretize DEF [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the DEF space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedef_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.def->RangeDEF.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev);
}
#undef SCALE_TO_RANGE
/* Common code shared between remap and concretize */
static int
gx_cieabc_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, bool *islab,
gs_memory_t *memory)
{
int code;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]);
if_debug0m(gs_debug_flag_icc, memory, "[icc] Creating ICC profile from abc object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_fromabc(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
abc_caches, lmn_caches, islab);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEABC");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_ABC;
/* Assign to the icc_equivalent member variable */
pcs->icc_equivalent = *ppcs_icc;
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsRGB;
return 0;
}
/* Render a CIEBasedABC color. */
/* We provide both remap and concretize, but only the former */
/* needs to be efficient. */
int
gx_remap_CIEABC(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gs_color_space *pcs_icc;
gs_client_color scale_pc;
bool islab;
int i, code;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug3m('c', pgs->memory, "[c]remap CIEABC [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the ABC space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_cieabc_to_icc(&pcs_icc, pcs, &islab, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEABC");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.abc->RangeABC.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
for (i = 0; i < 3; i++)
pdc->ccolor.paint.values[i] = pc->paint.values[i];
pdc->ccolor_valid = true;
/* Now the icc remap */
return code;
}
int
gx_concretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
gs_color_space *pcs_icc;
gs_client_color scale_pc;
bool islab;
gs_color_space *pcs = (gs_color_space *) pcs_in;
int code = 0;
if_debug3m('c', pgs->memory, "[c]concretize CIEABC [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the ABC space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_cieabc_to_icc(&pcs_icc, pcs, &islab, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEABC");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.abc->RangeABC.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev);
}
/* Common code shared between remap and concretize */
static int
gx_ciea_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory)
{
int code;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *a_cache = &(pcs->params.a->caches.DecodeA);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.a->common.caches.DecodeLMN[0]);
if_debug0m(gs_debug_flag_icc, memory,
"[icc] Creating ICC profile from CIEA object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_froma(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
a_cache, lmn_caches);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEA");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_A;
/* Assign to the icc_equivalent member variable */
pcs->icc_equivalent = *ppcs_icc;
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsGRAY;
return 0;
}
int
gx_remap_CIEA(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
int code;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug1m('c', dev->memory, "[c]remap CIEA [%g]\n",pc->paint.values[0]);
/* If we are coming in here then we may have not completed
the conversion of the CIE A space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciea_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEA");
} else {
/* Once the ICC color space is set, we should be doing all the remaps through the ICC equivalent */
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.a->RangeA), 1)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.a->RangeA), 1, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
pdc->ccolor.paint.values[0] = pc->paint.values[0];
pdc->ccolor_valid = true;
return code;
}
/* Render a CIEBasedA color. */
int
gx_concretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
int code = 0;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug1m('c', dev->memory, "[c]concretize CIEA %g\n", pc->paint.values[0]);
/* If we are comming in here then we have not completed
the conversion of the CIE A space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciea_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEA");
} else {
/* Once the ICC color space is set, we should be doing all the remaps through the ICC equivalent */
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.a->RangeA), 1)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.a->RangeA), 1, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev);
}
/* Call for cases where the equivalent icc color space needs to be set */
int
gs_colorspace_set_icc_equivalent(gs_color_space *pcs, bool *islab,
gs_memory_t *memory)
{
gs_color_space_index color_space_index = gs_color_space_get_index(pcs);
gs_color_space *picc_cs;
int code = 0;
*islab = false; /* For non CIEABC cases */
if (pcs->icc_equivalent != NULL || !gs_color_space_is_PSCIE(pcs))
return 0;
switch( color_space_index ) {
case gs_color_space_index_CIEDEFG:
code = gx_ciedefg_to_icc(&picc_cs, pcs, memory->stable_memory);
break;
case gs_color_space_index_CIEDEF:
code = gx_ciedef_to_icc(&picc_cs, pcs, memory->stable_memory);
break;
case gs_color_space_index_CIEABC:
code = gx_cieabc_to_icc(&picc_cs, pcs, islab, memory->stable_memory);
break;
case gs_color_space_index_CIEA:
code = gx_ciea_to_icc(&picc_cs, pcs, memory->stable_memory);
break;
default:
/* do nothing. Sould never happen */
break;
}
return code;
}
/* Call the remap_finish procedure in the joint_caches structure. */
int
gx_cie_remap_finish(cie_cached_vector3 vec3, frac * pconc, float *cie_xyz,
const gs_gstate * pgs,
const gs_color_space *pcs)
{
return pgs->cie_joint_caches->remap_finish(vec3, pconc, cie_xyz, pgs, pcs);
}
/* Finish remapping a CIEBased color. */
/* Return 3 if RGB, 4 if CMYK. */
/* this procedure is exported for the benefit of gsicc.c */
int
gx_cie_real_remap_finish(cie_cached_vector3 vec3, frac * pconc, float * xyz,
const gs_gstate * pgs,
const gs_color_space *pcs)
{
const gs_cie_render *pcrd = pgs->cie_render;
const gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
const gs_const_string *table = pcrd->RenderTable.lookup.table;
int tabc[3]; /* indices for final EncodeABC lookup */
/* Apply DecodeLMN, MatrixLMN(decode), and MatrixPQR. */
if (!pjc->skipDecodeLMN)
cie_lookup_map3(&vec3 /* LMN => PQR */, &pjc->DecodeLMN,
"Decode/MatrixLMN+MatrixPQR");
/* Apply TransformPQR, MatrixPQR', and MatrixLMN(encode). */
if (!pjc->skipPQR)
cie_lookup_map3(&vec3 /* PQR => LMN */, &pjc->TransformPQR,
"Transform/Matrix'PQR+MatrixLMN");
/* Apply EncodeLMN and MatrixABC(encode). */
if (!pjc->skipEncodeLMN)
cie_lookup_map3(&vec3 /* LMN => ABC */, &pcrd->caches.EncodeLMN,
"EncodeLMN+MatrixABC");
/* MatrixABCEncode includes the scaling of the EncodeABC */
/* cache index. */
#define SET_TABC(i, t)\
BEGIN\
tabc[i] = cie_cached2int(vec3 /*ABC*/.t - pcrd->EncodeABC_base[i],\
_cie_interpolate_bits);\
if ((uint)tabc[i] > (gx_cie_cache_size - 1) << _cie_interpolate_bits)\
tabc[i] = (tabc[i] < 0 ? 0 :\
(gx_cie_cache_size - 1) << _cie_interpolate_bits);\
END
SET_TABC(0, u);
SET_TABC(1, v);
SET_TABC(2, w);
#undef SET_TABC
if (table == 0) {
/*
* No further transformation.
* The final mapping step includes both restriction to
* the range [0..1] and conversion to fracs.
*/
#define EABC(i)\
cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.fracs.values, tabc[i])
pconc[0] = EABC(0);
pconc[1] = EABC(1);
pconc[2] = EABC(2);
#undef EABC
return 3;
} else {
/*
* Use the RenderTable.
*/
int m = pcrd->RenderTable.lookup.m;
#define RT_LOOKUP(j, i) pcrd->caches.RenderTableT[j].fracs.values[i]
#ifdef CIE_RENDER_TABLE_INTERPOLATE
/*
* The final mapping step includes restriction to the
* ranges [0..dims[c]] as ints with interpolation bits.
*/
fixed rfix[3];
const int s = _fixed_shift - _cie_interpolate_bits;
#define EABC(i)\
cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.ints.values, tabc[i])
#define FABC(i, s)\
((s) > 0) ? (EABC(i) << (s)) : (EABC(i) >> -(s))
rfix[0] = FABC(0, s);
rfix[1] = FABC(1, s);
rfix[2] = FABC(2, s);
#undef FABC
#undef EABC
if_debug6m('c', pgs->memory, "[c]ABC=%g,%g,%g => iabc=%g,%g,%g\n",
cie_cached2float(vec3.u), cie_cached2float(vec3.v),
cie_cached2float(vec3.w), fixed2float(rfix[0]),
fixed2float(rfix[1]), fixed2float(rfix[2]));
gx_color_interpolate_linear(rfix, &pcrd->RenderTable.lookup,
pconc);
if_debug3m('c', pgs->memory, "[c] interpolated => %g,%g,%g\n",
frac2float(pconc[0]), frac2float(pconc[1]),
frac2float(pconc[2]));
if (!pcrd->caches.RenderTableT_is_identity) {
/* Map the interpolated values. */
#define frac2cache_index(v) frac2bits(v, gx_cie_log2_cache_size)
pconc[0] = RT_LOOKUP(0, frac2cache_index(pconc[0]));
pconc[1] = RT_LOOKUP(1, frac2cache_index(pconc[1]));
pconc[2] = RT_LOOKUP(2, frac2cache_index(pconc[2]));
if (m > 3)
pconc[3] = RT_LOOKUP(3, frac2cache_index(pconc[3]));
#undef frac2cache_index
}
#else /* !CIE_RENDER_TABLE_INTERPOLATE */
/*
* The final mapping step includes restriction to the ranges
* [0..dims[c]], plus scaling of the indices in the strings.
*/
#define RI(i)\
pcrd->caches.EncodeABC[i].ints.values[tabc[i] >> _cie_interpolate_bits]
int ia = RI(0);
int ib = RI(1); /* pre-multiplied by m * NC */
int ic = RI(2); /* pre-multiplied by m */
const byte *prtc = table[ia].data + ib + ic;
/* (*pcrd->RenderTable.T)(prtc, m, pcrd, pconc); */
if_debug6m('c', pgs->memory, "[c]ABC=%g,%g,%g => iabc=%d,%d,%d\n",
cie_cached2float(vec3.u), cie_cached2float(vec3.v),
cie_cached2float(vec3.w), ia, ib, ic);
if (pcrd->caches.RenderTableT_is_identity) {
pconc[0] = byte2frac(prtc[0]);
pconc[1] = byte2frac(prtc[1]);
pconc[2] = byte2frac(prtc[2]);
if (m > 3)
pconc[3] = byte2frac(prtc[3]);
} else {
#if gx_cie_log2_cache_size == 8
# define byte2cache_index(b) (b)
#else
# if gx_cie_log2_cache_size > 8
# define byte2cache_index(b)\
( ((b) << (gx_cie_log2_cache_size - 8)) +\
((b) >> (16 - gx_cie_log2_cache_size)) )
# else /* < 8 */
# define byte2cache_index(b) ((b) >> (8 - gx_cie_log2_cache_size))
# endif
#endif
pconc[0] = RT_LOOKUP(0, byte2cache_index(prtc[0]));
pconc[1] = RT_LOOKUP(1, byte2cache_index(prtc[1]));
pconc[2] = RT_LOOKUP(2, byte2cache_index(prtc[2]));
if (m > 3)
pconc[3] = RT_LOOKUP(3, byte2cache_index(prtc[3]));
#undef byte2cache_index
}
#endif /* !CIE_RENDER_TABLE_INTERPOLATE */
#undef RI
#undef RT_LOOKUP
return m;
}
}
/*
* Finish "remapping" a CIEBased color only to the XYZ intermediate values.
* Note that we can't currently represent values outside the range [0..1]:
* this is a bug that we will have to address someday.
*/
static frac
float2frac_clamp(double x)
{
return float2frac((x <= 0 ? 0 : x >= 1 ? 1 : x));
}
int
gx_cie_xyz_remap_finish(cie_cached_vector3 vec3, frac * pconc, float *xyz,
const gs_gstate * pgs,
const gs_color_space *pcs)
{
const gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
/*
* All the steps through DecodeABC/MatrixABC have been applied, i.e.,
* vec3 is LMN values. Just apply DecodeLMN/MatrixLMN.
*/
if (!pjc->skipDecodeLMN)
cie_lookup_map3(&vec3 /* LMN => XYZ */, &pjc->DecodeLMN,
"Decode/MatrixLMN");
xyz[0] = cie_cached2float(vec3.u);
xyz[1] = cie_cached2float(vec3.v);
xyz[2] = cie_cached2float(vec3.w);
pconc[0] = float2frac_clamp(xyz[0]);
pconc[1] = float2frac_clamp(xyz[1]);
pconc[2] = float2frac_clamp(xyz[2]);
return 3;
}
/* Look up 3 values in a cache, with cached post-multiplication. */
static void
cie_lookup_mult3(cie_cached_vector3 * pvec,
const gx_cie_vector_cache3_t * pc)
{
#ifdef CIE_CACHE_INTERPOLATE
cie_cached_value u, v, w;
#ifdef CIE_CACHE_USE_FIXED
# define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\
cie_interpolate_between(v0, v1, i)
#else
float ftemp;
# define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\
((v0) + ((v1) - (v0)) *\
((ftemp = float_rshift(i, _cie_interpolate_bits)), ftemp - (int)ftemp))
#endif
/*
* Defining a macro for the entire component calculation would
* minimize source code, but it would make the result impossible
* to trace or debug. We use smaller macros instead, and run
* the usual risks associated with having 3 copies of the code.
* Note that pvec and pc are free variables in these macros.
*/
#define I_IN_RANGE(j, n)\
(pvec->n >= pc->interpolation_ranges[j].rmin &&\
pvec->n < pc->interpolation_ranges[j].rmax)
#define I_INDEX(j, n)\
LOOKUP_INDEX(pvec->n, &pc->caches[j], _cie_interpolate_bits)
#define I_ENTRY(i, j)\
&pc->caches[j].vecs.values[(int)cie_cached_rshift(i, _cie_interpolate_bits)]
#define I_ENTRY1(i, p)\
(i >= (gx_cie_cache_size - 1) << _cie_interpolate_bits ? p : p + 1)
if (I_IN_RANGE(0, u)) {
cie_cached_value i = I_INDEX(0, u);
const cie_cached_vector3 *p = I_ENTRY(i, 0);
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
if_debug0('C', "[c]Interpolating u.\n");
u = LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
v = LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
w = LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
} else {
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->u, &pc->caches[0]);
if_debug0('C', "[c]Not interpolating u.\n");
u = p->u, v = p->v, w = p->w;
}
if (I_IN_RANGE(1, v)) {
cie_cached_value i = I_INDEX(1, v);
const cie_cached_vector3 *p = I_ENTRY(i, 1);
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
if_debug0('C', "[c]Interpolating v.\n");
u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
} else {
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->v, &pc->caches[1]);
if_debug0('C', "[c]Not interpolating v.\n");
u += p->u, v += p->v, w += p->w;
}
if (I_IN_RANGE(2, w)) {
cie_cached_value i = I_INDEX(2, w);
const cie_cached_vector3 *p = I_ENTRY(i, 2);
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
if_debug0('C', "[c]Interpolating w.\n");
u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
} else {
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->w, &pc->caches[2]);
if_debug0('C', "[c]Not interpolating w.\n");
u += p->u, v += p->v, w += p->w;
}
#undef I_IN_RANGE
#undef I_INDEX
#undef I_ENTRY
#undef I_ENTRY1
pvec->u = u;
pvec->v = v;
pvec->w = w;
#else /* no interpolation */
const cie_cached_vector3 *pu = LOOKUP_ENTRY(pvec->u, &pc->caches[0]);
const cie_cached_vector3 *pv = LOOKUP_ENTRY(pvec->v, &pc->caches[1]);
const cie_cached_vector3 *pw = LOOKUP_ENTRY(pvec->w, &pc->caches[2]);
if_debug0('C', "[c]Not interpolating.\n");
pvec->u = pu->u + pv->u + pw->u;
pvec->v = pu->v + pv->v + pw->v;
pvec->w = pu->w + pv->w + pw->w;
#endif /* (no) interpolation */
}
|