summaryrefslogtreecommitdiff
blob: dadb4755d184260a8ff34b4dd37b67981e51efbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/* Copyright (C) 2001-2020 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
   CA 94945, U.S.A., +1(415)492-9861, for further information.
*/

/* 4-bit-per-pixel "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gxdevice.h"
#include "gxdevmem.h"		/* semi-public definitions */
#include "gdevmem.h"		/* private definitions */

/* ================ Standard (byte-oriented) device ================ */

#undef chunk
#define chunk byte
#define fpat(byt) mono_fill_make_pattern(byt)

/* Procedures */
declare_mem_procs(mem_mapped4_copy_mono, mem_mapped4_copy_color, mem_mapped4_fill_rectangle);

/* The device descriptor. */
const gx_device_memory mem_mapped4_device =
mem_device("image4", 3, 1,
           mem_mapped_map_rgb_color, mem_mapped_map_color_rgb,
  mem_mapped4_copy_mono, mem_mapped4_copy_color, mem_mapped4_fill_rectangle,
           mem_gray_strip_copy_rop);

/* Convert x coordinate to byte offset in scan line. */
#undef x_to_byte
#define x_to_byte(x) ((x) >> 1)

/* Define the 4-bit fill patterns. */
static const mono_fill_chunk tile_patterns[16] =
{fpat(0x00), fpat(0x11), fpat(0x22), fpat(0x33),
 fpat(0x44), fpat(0x55), fpat(0x66), fpat(0x77),
 fpat(0x88), fpat(0x99), fpat(0xaa), fpat(0xbb),
 fpat(0xcc), fpat(0xdd), fpat(0xee), fpat(0xff)
};

/* Fill a rectangle with a color. */
static int
mem_mapped4_fill_rectangle(gx_device * dev,
                           int x, int y, int w, int h, gx_color_index color)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;

    fit_fill(dev, x, y, w, h);
    bits_fill_rectangle(scan_line_base(mdev, y), x << 2, mdev->raster,
                        tile_patterns[color], w << 2, h);
    return 0;
}

/* Copy a bitmap. */
static int
mem_mapped4_copy_mono(gx_device * dev,
               const byte * base, int sourcex, int sraster, gx_bitmap_id id,
        int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    const byte *line;
    declare_scan_ptr(dest);
    byte invert, bb;

    fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
    setup_rect(dest);
    line = base + (sourcex >> 3);
    /* Divide into opaque and masked cases. */
    if (one == gx_no_color_index) {
        if (zero == gx_no_color_index)
            return 0;		/* nothing to do */
        invert = 0xff;
        bb = ((byte) zero << 4) | (byte) zero;
    } else if (zero == gx_no_color_index) {
        invert = 0;
        bb = ((byte) one << 4) | (byte) one;
    } else {
        /* Opaque case. */
        int shift = ~(sourcex ^ x) & 1;
        byte oz[4];

        oz[0] = (byte)((zero << 4) | zero);
        oz[1] = (byte)((zero << 4) | one);
        oz[2] = (byte)((one << 4) | zero);
        oz[3] = (byte)((one << 4) | one);
        do {
            register byte *dptr = (byte *) dest;
            const byte *sptr = line;
            register uint sbyte = *sptr++;
            register int sbit = ~sourcex & 7;
            int count = w;

            /*
             * If the first source bit corresponds to an odd X in the
             * destination, process it now.
             */
            if (x & 1) {
                *dptr = (*dptr & 0xf0) |
                    ((sbyte >> sbit) & 1 ? one : zero);
                --count;	/* may now be 0 */
                if (--sbit < 0)
                    sbit = 7, sbyte = *sptr++;
                ++dptr;
            }
            /*
             * Now we know the next destination X is even.  We want to
             * process 2 source bits at a time from now on, so set things up
             * properly depending on whether the next source X (bit) is even
             * or odd.  In both even and odd cases, the active source bits
             * are in bits 8..1 of sbyte.
             */
            sbyte <<= shift;
            sbit += shift - 1;
            /*
             * Now bit # sbit+1 is the most significant unprocessed bit
             * in sbyte.  -1 <= sbit <= 7; sbit is odd.
             * Note that if sbit = -1, all of sbyte has been processed.
             *
             * Continue processing pairs of bits in the first source byte.
             */
            while (count >= 2 && sbit >= 0) {
                *dptr++ = oz[(sbyte >> sbit) & 3];
                sbit -= 2, count -= 2;
            }
            /*
             * Now sbit = -1 iff we have processed the entire first source
             * byte.
             *
             * Process full source bytes.
             */
            if (shift) {
                sbyte >>= 1;	/* in case count < 8 */
                for (; count >= 8; dptr += 4, count -= 8) {
                    sbyte = *sptr++;
                    dptr[0] = oz[sbyte >> 6];
                    dptr[1] = oz[(sbyte >> 4) & 3];
                    dptr[2] = oz[(sbyte >> 2) & 3];
                    dptr[3] = oz[sbyte & 3];
                }
                sbyte <<= 1;
            } else {
                for (; count >= 8; dptr += 4, count -= 8) {
                    sbyte = (sbyte << 8) | *sptr++;
                    dptr[0] = oz[(sbyte >> 7) & 3];
                    dptr[1] = oz[(sbyte >> 5) & 3];
                    dptr[2] = oz[(sbyte >> 3) & 3];
                    dptr[3] = oz[(sbyte >> 1) & 3];
                }
            }
            if (!count)
                continue;
            /*
             * Process pairs of bits in the final source byte.  Note that
             * if sbit > 0, this is still the first source byte (the
             * full-byte loop wasn't executed).
             */
            if (sbit < 0) {
                sbyte = (sbyte << 8) | (*sptr << shift);
                sbit = 7;
            }
            while (count >= 2) {
                *dptr++ = oz[(sbyte >> sbit) & 3];
                sbit -= 2, count -= 2;
            }
            /*
             * If the final source bit corresponds to an even X value,
             * process it now.
             */
            if (count) {
                *dptr = (*dptr & 0x0f) |
                    (((sbyte >> sbit) & 2 ? one : zero) << 4);
            }
        } while ((line += sraster, inc_ptr(dest, draster), --h) > 0);
        return 0;
    }
    /* Masked case. */
    do {
        register byte *dptr = (byte *) dest;
        const byte *sptr = line;
        register int sbyte = *sptr++ ^ invert;
        register int sbit = 0x80 >> (sourcex & 7);
        register byte mask = (x & 1 ? 0x0f : 0xf0);
        int count = w;

        do {
            if (sbyte & sbit)
                *dptr = (*dptr & ~mask) | (bb & mask);
            if ((sbit >>= 1) == 0)
                sbit = 0x80, sbyte = *sptr++ ^ invert;
            dptr += (mask = ~mask) >> 7;
        } while (--count > 0);
        line += sraster;
        inc_ptr(dest, draster);
    } while (--h > 0);
    return 0;
}

/* Copy a color bitmap. */
static int
mem_mapped4_copy_color(gx_device * dev,
               const byte * base, int sourcex, int sraster, gx_bitmap_id id,
                       int x, int y, int w, int h)
{
    /* Use monobit copy_mono. */
    int code;

    /* Patch the width in the device temporarily. */
    dev->width <<= 2;
    code = (*dev_proc(&mem_mono_device, copy_mono))
        (dev, base, sourcex << 2, sraster, id,
         x << 2, y, w << 2, h, (gx_color_index) 0, (gx_color_index) 1);
    /* Restore the correct width. */
    dev->width >>= 2;
    return code;
}

/* ================ "Word"-oriented device ================ */

/* Note that on a big-endian machine, this is the same as the */
/* standard byte-oriented-device. */

#if !ARCH_IS_BIG_ENDIAN

/* Procedures */
declare_mem_procs(mem4_word_copy_mono, mem4_word_copy_color, mem4_word_fill_rectangle);

/* Here is the device descriptor. */
const gx_device_memory mem_mapped4_word_device =
mem_full_device("image4w", 4, 0, mem_open,
                mem_mapped_map_rgb_color, mem_mapped_map_color_rgb,
        mem4_word_copy_mono, mem4_word_copy_color, mem4_word_fill_rectangle,
                gx_default_map_cmyk_color, gx_default_strip_tile_rectangle,
                gx_no_strip_copy_rop, mem_word_get_bits_rectangle);

/* Fill a rectangle with a color. */
static int
mem4_word_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
                         gx_color_index color)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    byte *base;
    uint raster;

    fit_fill(dev, x, y, w, h);
    base = scan_line_base(mdev, y);
    raster = mdev->raster;
    mem_swap_byte_rect(base, raster, x << 2, w << 2, h, true);
    bits_fill_rectangle(base, x << 2, raster,
                        tile_patterns[color], w << 2, h);
    mem_swap_byte_rect(base, raster, x << 2, w << 2, h, true);
    return 0;
}

/* Copy a bitmap. */
static int
mem4_word_copy_mono(gx_device * dev,
               const byte * base, int sourcex, int sraster, gx_bitmap_id id,
        int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    byte *row;
    uint raster;
    bool store;

    fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
    row = scan_line_base(mdev, y);
    raster = mdev->raster;
    store = (zero != gx_no_color_index && one != gx_no_color_index);
    mem_swap_byte_rect(row, raster, x << 2, w << 2, h, store);
    mem_mapped4_copy_mono(dev, base, sourcex, sraster, id,
                          x, y, w, h, zero, one);
    mem_swap_byte_rect(row, raster, x << 2, w << 2, h, false);
    return 0;
}

/* Copy a color bitmap. */
static int
mem4_word_copy_color(gx_device * dev,
               const byte * base, int sourcex, int sraster, gx_bitmap_id id,
                     int x, int y, int w, int h)
{
    int code;

    fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
    /* Use monobit copy_mono. */
    /* Patch the width in the device temporarily. */
    dev->width <<= 2;
    code = (*dev_proc(&mem_mono_word_device, copy_mono))
        (dev, base, sourcex << 2, sraster, id,
         x << 2, y, w << 2, h, (gx_color_index) 0, (gx_color_index) 1);
    /* Restore the correct width. */
    dev->width >>= 2;
    return code;
}

#endif /* !ARCH_IS_BIG_ENDIAN */