aboutsummaryrefslogtreecommitdiff
blob: 96ec735e3fff9fdf7c2ea530bf8e033dc9832a5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* Double-precision floating point 2^x.
   Copyright (C) 1997-2013 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

/* The basic design here is from
   Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
   Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
   17 (1), March 1991, pp. 26-45.
   It has been slightly modified to compute 2^x instead of e^x.
   */
#include <stdlib.h>
#include <float.h>
#include <ieee754.h>
#include <math.h>
#include <fenv.h>
#include <inttypes.h>
#include <math_private.h>

#include "t_exp2.h"

static const double TWO1023 = 8.988465674311579539e+307;
static const double TWOM1000 = 9.3326361850321887899e-302;

double
__ieee754_exp2 (double x)
{
  static const double himark = (double) DBL_MAX_EXP;
  static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1);

  /* Check for usual case.  */
  if (__builtin_expect (isless (x, himark), 1))
    {
      /* Exceptional cases:  */
      if (__builtin_expect (! isgreaterequal (x, lomark), 0))
	{
	  if (__isinf (x))
	    /* e^-inf == 0, with no error.  */
	    return 0;
	  else
	    /* Underflow */
	    return TWOM1000 * TWOM1000;
	}

      static const double THREEp42 = 13194139533312.0;
      int tval, unsafe;
      double rx, x22, result;
      union ieee754_double ex2_u, scale_u;

      {
	SET_RESTORE_ROUND_NOEX (FE_TONEAREST);

	/* 1. Argument reduction.
	   Choose integers ex, -256 <= t < 256, and some real
	   -1/1024 <= x1 <= 1024 so that
	   x = ex + t/512 + x1.

	   First, calculate rx = ex + t/512.  */
	rx = x + THREEp42;
	rx -= THREEp42;
	x -= rx;  /* Compute x=x1. */
	/* Compute tval = (ex*512 + t)+256.
	   Now, t = (tval mod 512)-256 and ex=tval/512  [that's mod, NOT %;
	   and /-round-to-nearest not the usual c integer /].  */
	tval = (int) (rx * 512.0 + 256.0);

	/* 2. Adjust for accurate table entry.
	   Find e so that
	   x = ex + t/512 + e + x2
	   where -1e6 < e < 1e6, and
	   (double)(2^(t/512+e))
	   is accurate to one part in 2^-64.  */

	/* 'tval & 511' is the same as 'tval%512' except that it's always
	   positive.
	   Compute x = x2.  */
	x -= exp2_deltatable[tval & 511];

	/* 3. Compute ex2 = 2^(t/512+e+ex).  */
	ex2_u.d = exp2_accuratetable[tval & 511];
	tval >>= 9;
	unsafe = abs(tval) >= -DBL_MIN_EXP - 1;
	ex2_u.ieee.exponent += tval >> unsafe;
	scale_u.d = 1.0;
	scale_u.ieee.exponent += tval - (tval >> unsafe);

	/* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
	   with maximum error in [-2^-10-2^-30,2^-10+2^-30]
	   less than 10^-19.  */

	x22 = (((.0096181293647031180
		 * x + .055504110254308625)
		* x + .240226506959100583)
	       * x + .69314718055994495) * ex2_u.d;
        math_opt_barrier (x22);
      }

      /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex).  */
      result = x22 * x + ex2_u.d;

      if (!unsafe)
	return result;
      else
	return result * scale_u.d;
    }
  else
    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
    return TWO1023*x;
}
strong_alias (__ieee754_exp2, __exp2_finite)