summaryrefslogtreecommitdiff
blob: ef459bf596f07e0f15d2f781cbe790fea3353a4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/* Target dependent code for GNU/Linux ARC.

   Copyright 2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* GDB header files.  */
#include "defs.h"
#include "linux-tdep.h"
#include "objfiles.h"
#include "opcode/arc.h"
#include "osabi.h"
#include "solib-svr4.h"

/* ARC header files.  */
#include "opcodes/arc-dis.h"
#include "arc-linux-tdep.h"
#include "arc-tdep.h"
#include "arch/arc.h"

#define REGOFF(offset) (offset * ARC_REGISTER_SIZE)

/* arc_linux_core_reg_offsets[i] is the offset in the .reg section of GDB
   regnum i.  Array index is an internal GDB register number, as defined in
   arc-tdep.h:arc_regnum.

   From include/uapi/asm/ptrace.h in the ARC Linux sources.  */

/* The layout of this struct is tightly bound to "arc_regnum" enum
   in arc-tdep.h.  Any change of order in there, must be reflected
   here as well.  */
static const int arc_linux_core_reg_offsets[] = {
  /* R0 - R12.  */
  REGOFF (22), REGOFF (21), REGOFF (20), REGOFF (19),
  REGOFF (18), REGOFF (17), REGOFF (16), REGOFF (15),
  REGOFF (14), REGOFF (13), REGOFF (12), REGOFF (11),
  REGOFF (10),

  /* R13 - R25.  */
  REGOFF (37), REGOFF (36), REGOFF (35), REGOFF (34),
  REGOFF (33), REGOFF (32), REGOFF (31), REGOFF (30),
  REGOFF (29), REGOFF (28), REGOFF (27), REGOFF (26),
  REGOFF (25),

  REGOFF (9),			/* R26 (GP) */
  REGOFF (8),			/* FP */
  REGOFF (23),			/* SP */
  ARC_OFFSET_NO_REGISTER,	/* ILINK */
  ARC_OFFSET_NO_REGISTER,	/* R30 */
  REGOFF (7),			/* BLINK */

  /* R32 - R59.  */
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER, ARC_OFFSET_NO_REGISTER,
  ARC_OFFSET_NO_REGISTER,

  REGOFF (4),			/* LP_COUNT */
  ARC_OFFSET_NO_REGISTER,	/* RESERVED */
  ARC_OFFSET_NO_REGISTER,	/* LIMM */
  ARC_OFFSET_NO_REGISTER,	/* PCL */

  REGOFF (39),			/* PC  */
  REGOFF (5),			/* STATUS32 */
  REGOFF (2),			/* LP_START */
  REGOFF (3),			/* LP_END */
  REGOFF (1),			/* BTA */
  REGOFF (6)			/* ERET */
};

/* Implement the "cannot_fetch_register" gdbarch method.  */

static int
arc_linux_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
{
  /* Assume that register is readable if it is unknown.  */
  switch (regnum)
    {
    case ARC_ILINK_REGNUM:
    case ARC_RESERVED_REGNUM:
    case ARC_LIMM_REGNUM:
      return true;
    case ARC_R30_REGNUM:
    case ARC_R58_REGNUM:
    case ARC_R59_REGNUM:
      return !arc_mach_is_arcv2 (gdbarch);
    }
  return (regnum > ARC_BLINK_REGNUM) && (regnum < ARC_LP_COUNT_REGNUM);
}

/* Implement the "cannot_store_register" gdbarch method.  */

static int
arc_linux_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
  /* Assume that register is writable if it is unknown.  */
  switch (regnum)
    {
    case ARC_ILINK_REGNUM:
    case ARC_RESERVED_REGNUM:
    case ARC_LIMM_REGNUM:
    case ARC_PCL_REGNUM:
      return true;
    case ARC_R30_REGNUM:
    case ARC_R58_REGNUM:
    case ARC_R59_REGNUM:
      return !arc_mach_is_arcv2 (gdbarch);
    }
  return (regnum > ARC_BLINK_REGNUM) && (regnum < ARC_LP_COUNT_REGNUM);
}

/* For ARC Linux, breakpoints use the 16-bit TRAP_S 1 instruction, which
   is 0x3e78 (little endian) or 0x783e (big endian).  */

static const gdb_byte arc_linux_trap_s_be[] = { 0x78, 0x3e };
static const gdb_byte arc_linux_trap_s_le[] = { 0x3e, 0x78 };
static const int trap_size = 2;   /* Number of bytes to insert "trap".  */

/* Implement the "breakpoint_kind_from_pc" gdbarch method.  */

static int
arc_linux_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  return trap_size;
}

/* Implement the "sw_breakpoint_from_kind" gdbarch method.  */

static const gdb_byte *
arc_linux_sw_breakpoint_from_kind (struct gdbarch *gdbarch,
				   int kind, int *size)
{
  gdb_assert (kind == trap_size);
  *size = kind;
  return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	  ? arc_linux_trap_s_be
	  : arc_linux_trap_s_le);
}

/* Implement the "software_single_step" gdbarch method.  */

static std::vector<CORE_ADDR>
arc_linux_software_single_step (struct regcache *regcache)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct disassemble_info di = arc_disassemble_info (gdbarch);

  /* Read current instruction.  */
  struct arc_instruction curr_insn;
  arc_insn_decode (regcache_read_pc (regcache), &di, arc_delayed_print_insn,
		   &curr_insn);
  CORE_ADDR next_pc = arc_insn_get_linear_next_pc (curr_insn);

  std::vector<CORE_ADDR> next_pcs;

  /* For instructions with delay slots, the fall thru is not the
     instruction immediately after the current instruction, but the one
     after that.  */
  if (curr_insn.has_delay_slot)
    {
      struct arc_instruction next_insn;
      arc_insn_decode (next_pc, &di, arc_delayed_print_insn, &next_insn);
      next_pcs.push_back (arc_insn_get_linear_next_pc (next_insn));
    }
  else
    next_pcs.push_back (next_pc);

  ULONGEST status32;
  regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
				 &status32);

  if (curr_insn.is_control_flow)
    {
      CORE_ADDR branch_pc = arc_insn_get_branch_target (curr_insn);
      if (branch_pc != next_pc)
	next_pcs.push_back (branch_pc);
    }
  /* Is current instruction the last in a loop body?  */
  else if (tdep->has_hw_loops)
    {
      /* If STATUS32.L is 1, then ZD-loops are disabled.  */
      if ((status32 & ARC_STATUS32_L_MASK) == 0)
	{
	  ULONGEST lp_end, lp_start, lp_count;
	  regcache_cooked_read_unsigned (regcache, ARC_LP_START_REGNUM,
					 &lp_start);
	  regcache_cooked_read_unsigned (regcache, ARC_LP_END_REGNUM, &lp_end);
	  regcache_cooked_read_unsigned (regcache, ARC_LP_COUNT_REGNUM,
					 &lp_count);

	  if (arc_debug)
	    {
	      debug_printf ("arc-linux: lp_start = %s, lp_end = %s, "
			    "lp_count = %s, next_pc = %s\n",
			    paddress (gdbarch, lp_start),
			    paddress (gdbarch, lp_end),
			    pulongest (lp_count),
			    paddress (gdbarch, next_pc));
	    }

	  if (next_pc == lp_end && lp_count > 1)
	    {
	      /* The instruction is in effect a jump back to the start of
		 the loop.  */
	      next_pcs.push_back (lp_start);
	    }
	}
    }

  /* Is this a delay slot?  Then next PC is in BTA register.  */
  if ((status32 & ARC_STATUS32_DE_MASK) != 0)
    {
      ULONGEST bta;
      regcache_cooked_read_unsigned (regcache, ARC_BTA_REGNUM, &bta);
      next_pcs.push_back (bta);
    }

  return next_pcs;
}

/* Implement the "skip_solib_resolver" gdbarch method.

   See glibc_skip_solib_resolver for details.  */

static CORE_ADDR
arc_linux_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  /* For uClibc 0.9.26+.

     An unresolved PLT entry points to "__dl_linux_resolve", which calls
     "_dl_linux_resolver" to do the resolving and then eventually jumps to
     the function.

     So we look for the symbol `_dl_linux_resolver', and if we are there,
     gdb sets a breakpoint at the return address, and continues.  */
  struct bound_minimal_symbol resolver
    = lookup_minimal_symbol ("_dl_linux_resolver", NULL, NULL);

  if (arc_debug)
    {
      if (resolver.minsym != nullptr)
	{
	  CORE_ADDR res_addr = BMSYMBOL_VALUE_ADDRESS (resolver);
	  debug_printf ("arc-linux: skip_solib_resolver (): "
			"pc = %s, resolver at %s\n",
			print_core_address (gdbarch, pc),
			print_core_address (gdbarch, res_addr));
	}
      else
	{
	  debug_printf ("arc-linux: skip_solib_resolver (): "
			"pc = %s, no resolver found\n",
			print_core_address (gdbarch, pc));
	}
    }

  if (resolver.minsym != nullptr && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
    {
      /* Find the return address.  */
      return frame_unwind_caller_pc (get_current_frame ());
    }
  else
    {
      /* No breakpoint required.  */
      return 0;
    }
}

void
arc_linux_supply_gregset (const struct regset *regset,
			  struct regcache *regcache,
			  int regnum, const void *gregs, size_t size)
{
  gdb_static_assert (ARC_LAST_REGNUM
		     < ARRAY_SIZE (arc_linux_core_reg_offsets));

  const bfd_byte *buf = (const bfd_byte *) gregs;

  for (int reg = 0; reg <= ARC_LAST_REGNUM; reg++)
      if (arc_linux_core_reg_offsets[reg] != ARC_OFFSET_NO_REGISTER)
	regcache->raw_supply (reg, buf + arc_linux_core_reg_offsets[reg]);
}

void
arc_linux_supply_v2_regset (const struct regset *regset,
			    struct regcache *regcache, int regnum,
			    const void *v2_regs, size_t size)
{
  const bfd_byte *buf = (const bfd_byte *) v2_regs;

  /* user_regs_arcv2 is defined in linux arch/arc/include/uapi/asm/ptrace.h.  */
  regcache->raw_supply (ARC_R30_REGNUM, buf);
  regcache->raw_supply (ARC_R58_REGNUM, buf + REGOFF (1));
  regcache->raw_supply (ARC_R59_REGNUM, buf + REGOFF (2));
}

/* Populate BUF with register REGNUM from the REGCACHE.  */

static void
collect_register (const struct regcache *regcache, struct gdbarch *gdbarch,
		  int regnum, gdb_byte *buf)
{
  int offset;

  /* Skip non-existing registers.  */
  if (arc_linux_core_reg_offsets[regnum] == ARC_OFFSET_NO_REGISTER)
    return;

  /* The address where the execution has stopped is in pseudo-register
     STOP_PC.  However, when kernel code is returning from the exception,
     it uses the value from ERET register.  Since, TRAP_S (the breakpoint
     instruction) commits, the ERET points to the next instruction.  In
     other words: ERET != STOP_PC.  To jump back from the kernel code to
     the correct address, ERET must be overwritten by GDB's STOP_PC.  Else,
     the program will continue at the address after the current instruction.
     */
  if (regnum == gdbarch_pc_regnum (gdbarch))
    offset = arc_linux_core_reg_offsets[ARC_ERET_REGNUM];
  else
    offset = arc_linux_core_reg_offsets[regnum];
  regcache->raw_collect (regnum, buf + offset);
}

void
arc_linux_collect_gregset (const struct regset *regset,
			   const struct regcache *regcache,
			   int regnum, void *gregs, size_t size)
{
  gdb_static_assert (ARC_LAST_REGNUM
		     < ARRAY_SIZE (arc_linux_core_reg_offsets));

  gdb_byte *buf = (gdb_byte *) gregs;
  struct gdbarch *gdbarch = regcache->arch ();

  /* regnum == -1 means writing all the registers.  */
  if (regnum == -1)
    for (int reg = 0; reg <= ARC_LAST_REGNUM; reg++)
      collect_register (regcache, gdbarch, reg, buf);
  else if (regnum <= ARC_LAST_REGNUM)
    collect_register (regcache, gdbarch, regnum, buf);
  else
    gdb_assert_not_reached ("Invalid regnum in arc_linux_collect_gregset.");
}

void
arc_linux_collect_v2_regset (const struct regset *regset,
			     const struct regcache *regcache, int regnum,
			     void *v2_regs, size_t size)
{
  bfd_byte *buf = (bfd_byte *) v2_regs;

  regcache->raw_collect (ARC_R30_REGNUM, buf);
  regcache->raw_collect (ARC_R58_REGNUM, buf + REGOFF (1));
  regcache->raw_collect (ARC_R59_REGNUM, buf + REGOFF (2));
}

/* Linux regset definitions.  */

static const struct regset arc_linux_gregset = {
  arc_linux_core_reg_offsets,
  arc_linux_supply_gregset,
  arc_linux_collect_gregset,
};

static const struct regset arc_linux_v2_regset = {
  NULL,
  arc_linux_supply_v2_regset,
  arc_linux_collect_v2_regset,
};

/* Implement the `iterate_over_regset_sections` gdbarch method.  */

static void
arc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
					iterate_over_regset_sections_cb *cb,
					void *cb_data,
					const struct regcache *regcache)
{
  /* There are 40 registers in Linux user_regs_struct, although some of
     them are now just a mere paddings, kept to maintain binary
     compatibility with older tools.  */
  const int sizeof_gregset = 40 * ARC_REGISTER_SIZE;

  cb (".reg", sizeof_gregset, sizeof_gregset, &arc_linux_gregset, NULL,
      cb_data);
  cb (".reg-arc-v2", ARC_LINUX_SIZEOF_V2_REGSET, ARC_LINUX_SIZEOF_V2_REGSET,
      &arc_linux_v2_regset, NULL, cb_data);
}

/* Implement the `core_read_description` gdbarch method.  */

static const struct target_desc *
arc_linux_core_read_description (struct gdbarch *gdbarch,
				 struct target_ops *target,
				 bfd *abfd)
{
  arc_arch_features features
    = arc_arch_features_create (abfd,
				gdbarch_bfd_arch_info (gdbarch)->mach);
  return arc_lookup_target_description (features);
}

/* Initialization specific to Linux environment.  */

static void
arc_linux_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (arc_debug)
    debug_printf ("arc-linux: GNU/Linux OS/ABI initialization.\n");

  /* If we are using Linux, we have in uClibc
     (libc/sysdeps/linux/arc/bits/setjmp.h):

     typedef int __jmp_buf[13+1+1+1];    //r13-r25, fp, sp, blink

     Where "blink" is a stored PC of a caller function.
   */
  tdep->jb_pc = 15;

  linux_init_abi (info, gdbarch);

  /* Set up target dependent GDB architecture entries.  */
  set_gdbarch_cannot_fetch_register (gdbarch, arc_linux_cannot_fetch_register);
  set_gdbarch_cannot_store_register (gdbarch, arc_linux_cannot_store_register);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       arc_linux_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       arc_linux_sw_breakpoint_from_kind);
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
					     svr4_fetch_objfile_link_map);
  set_gdbarch_software_single_step (gdbarch, arc_linux_software_single_step);
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
  set_gdbarch_skip_solib_resolver (gdbarch, arc_linux_skip_solib_resolver);
  set_gdbarch_iterate_over_regset_sections
    (gdbarch, arc_linux_iterate_over_regset_sections);
  set_gdbarch_core_read_description (gdbarch, arc_linux_core_read_description);

  /* GNU/Linux uses SVR4-style shared libraries, with 32-bit ints, longs
     and pointers (ILP32).  */
  set_solib_svr4_fetch_link_map_offsets (gdbarch,
					 svr4_ilp32_fetch_link_map_offsets);
}

/* Suppress warning from -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_arc_linux_tdep;

void
_initialize_arc_linux_tdep ()
{
  gdbarch_register_osabi (bfd_arch_arc, 0, GDB_OSABI_LINUX,
			  arc_linux_init_osabi);
}