/* Semantics ops support for CGEN-based simulators.
Copyright (C) 1996-2015 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This file is part of the GNU Simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef CGEN_SEM_OPS_H
#define CGEN_SEM_OPS_H
#include
/* TODO: This should get moved into sim-inline.h. */
#if defined (__GNUC__) && ! defined (SEMOPS_DEFINE_INLINE)
#define SEMOPS_DEFINE_INLINE
#define SEMOPS_INLINE EXTERN_INLINE
#else
#define SEMOPS_INLINE
#endif
/* Semantic operations.
At one point this file was machine generated. Maybe it will be again. */
/* TODO: Lazy encoding/decoding of fp values. */
/* These don't really have a mode. */
#define ANDIF(x, y) ((x) && (y))
#define ORIF(x, y) ((x) || (y))
#define SUBBI(x, y) ((x) - (y))
#define ANDBI(x, y) ((x) & (y))
#define ORBI(x, y) ((x) | (y))
#define XORBI(x, y) ((x) ^ (y))
#define NEGBI(x) (- (x))
#define NOTBI(x) (! (BI) (x))
#define INVBI(x) (~ (x))
#define EQBI(x, y) ((BI) (x) == (BI) (y))
#define NEBI(x, y) ((BI) (x) != (BI) (y))
#define LTBI(x, y) ((BI) (x) < (BI) (y))
#define LEBI(x, y) ((BI) (x) <= (BI) (y))
#define GTBI(x, y) ((BI) (x) > (BI) (y))
#define GEBI(x, y) ((BI) (x) >= (BI) (y))
#define LTUBI(x, y) ((BI) (x) < (BI) (y))
#define LEUBI(x, y) ((BI) (x) <= (BI) (y))
#define GTUBI(x, y) ((BI) (x) > (BI) (y))
#define GEUBI(x, y) ((BI) (x) >= (BI) (y))
#define ADDQI(x, y) ((QI) ((UQI) (x) + (UQI) (y)))
#define SUBQI(x, y) ((QI) ((UQI) (x) - (UQI) (y)))
#define MULQI(x, y) ((QI) ((UQI) (x) * (UQI) (y)))
#define DIVQI(x, y) ((QI) (x) / (QI) (y))
#define UDIVQI(x, y) ((UQI) (x) / (UQI) (y))
#define MODQI(x, y) ((QI) (x) % (QI) (y))
#define UMODQI(x, y) ((UQI) (x) % (UQI) (y))
#define SRAQI(x, y) ((QI) (x) >> (y))
#define SRLQI(x, y) ((UQI) (x) >> (y))
#define SLLQI(x, y) ((UQI) (x) << (y))
extern QI RORQI (QI, int);
extern QI ROLQI (QI, int);
#define ANDQI(x, y) ((x) & (y))
#define ORQI(x, y) ((x) | (y))
#define XORQI(x, y) ((x) ^ (y))
#define NEGQI(x) ((QI) (- (UQI) (x)))
#define NOTQI(x) (! (QI) (x))
#define INVQI(x) (~ (x))
#define ABSQI(x) ((QI) ((QI) (x) < 0 ? -(UQI) (x) : (UQI) (x)))
#define EQQI(x, y) ((QI) (x) == (QI) (y))
#define NEQI(x, y) ((QI) (x) != (QI) (y))
#define LTQI(x, y) ((QI) (x) < (QI) (y))
#define LEQI(x, y) ((QI) (x) <= (QI) (y))
#define GTQI(x, y) ((QI) (x) > (QI) (y))
#define GEQI(x, y) ((QI) (x) >= (QI) (y))
#define LTUQI(x, y) ((UQI) (x) < (UQI) (y))
#define LEUQI(x, y) ((UQI) (x) <= (UQI) (y))
#define GTUQI(x, y) ((UQI) (x) > (UQI) (y))
#define GEUQI(x, y) ((UQI) (x) >= (UQI) (y))
#define ADDHI(x, y) ((HI) ((UHI) (x) + (UHI) (y)))
#define SUBHI(x, y) ((HI) ((UHI) (x) - (UHI) (y)))
#define MULHI(x, y) ((HI) ((UHI) (x) * (UHI) (y)))
#define DIVHI(x, y) ((HI) (x) / (HI) (y))
#define UDIVHI(x, y) ((UHI) (x) / (UHI) (y))
#define MODHI(x, y) ((HI) (x) % (HI) (y))
#define UMODHI(x, y) ((UHI) (x) % (UHI) (y))
#define SRAHI(x, y) ((HI) (x) >> (y))
#define SRLHI(x, y) ((UHI) (x) >> (y))
#define SLLHI(x, y) ((UHI) (x) << (y))
extern HI RORHI (HI, int);
extern HI ROLHI (HI, int);
#define ANDHI(x, y) ((x) & (y))
#define ORHI(x, y) ((x) | (y))
#define XORHI(x, y) ((x) ^ (y))
#define NEGHI(x) ((HI) (- (UHI) (x)))
#define NOTHI(x) (! (HI) (x))
#define INVHI(x) (~ (x))
#define ABSHI(x) ((HI) ((HI) (x) < 0 ? -(UHI) (x) : (UHI) (x)))
#define EQHI(x, y) ((HI) (x) == (HI) (y))
#define NEHI(x, y) ((HI) (x) != (HI) (y))
#define LTHI(x, y) ((HI) (x) < (HI) (y))
#define LEHI(x, y) ((HI) (x) <= (HI) (y))
#define GTHI(x, y) ((HI) (x) > (HI) (y))
#define GEHI(x, y) ((HI) (x) >= (HI) (y))
#define LTUHI(x, y) ((UHI) (x) < (UHI) (y))
#define LEUHI(x, y) ((UHI) (x) <= (UHI) (y))
#define GTUHI(x, y) ((UHI) (x) > (UHI) (y))
#define GEUHI(x, y) ((UHI) (x) >= (UHI) (y))
#define ADDSI(x, y) ((SI) ((USI) (x) + (USI) (y)))
#define SUBSI(x, y) ((SI) ((USI) (x) - (USI) (y)))
#define MULSI(x, y) ((SI) ((USI) (x) * (USI) (y)))
#define DIVSI(x, y) ((SI) (x) / (SI) (y))
#define UDIVSI(x, y) ((USI) (x) / (USI) (y))
#define MODSI(x, y) ((SI) (x) % (SI) (y))
#define UMODSI(x, y) ((USI) (x) % (USI) (y))
#define SRASI(x, y) ((SI) (x) >> (y))
#define SRLSI(x, y) ((USI) (x) >> (y))
#define SLLSI(x, y) ((USI) (x) << (y))
extern SI RORSI (SI, int);
extern SI ROLSI (SI, int);
#define ANDSI(x, y) ((x) & (y))
#define ORSI(x, y) ((x) | (y))
#define XORSI(x, y) ((x) ^ (y))
#define NEGSI(x) ((SI) (- (USI) (x)))
#define NOTSI(x) (! (SI) (x))
#define INVSI(x) (~ (x))
#define ABSSI(x) ((SI) ((SI) (x) < 0 ? -(USI) (x) : (USI) (x)))
#define EQSI(x, y) ((SI) (x) == (SI) (y))
#define NESI(x, y) ((SI) (x) != (SI) (y))
#define LTSI(x, y) ((SI) (x) < (SI) (y))
#define LESI(x, y) ((SI) (x) <= (SI) (y))
#define GTSI(x, y) ((SI) (x) > (SI) (y))
#define GESI(x, y) ((SI) (x) >= (SI) (y))
#define LTUSI(x, y) ((USI) (x) < (USI) (y))
#define LEUSI(x, y) ((USI) (x) <= (USI) (y))
#define GTUSI(x, y) ((USI) (x) > (USI) (y))
#define GEUSI(x, y) ((USI) (x) >= (USI) (y))
#ifdef DI_FN_SUPPORT
extern DI ADDDI (DI, DI);
extern DI SUBDI (DI, DI);
extern DI MULDI (DI, DI);
extern DI DIVDI (DI, DI);
extern DI UDIVDI (DI, DI);
extern DI MODDI (DI, DI);
extern DI UMODDI (DI, DI);
extern DI SRADI (DI, int);
extern UDI SRLDI (UDI, int);
extern UDI SLLDI (UDI, int);
extern DI RORDI (DI, int);
extern DI ROLDI (DI, int);
extern DI ANDDI (DI, DI);
extern DI ORDI (DI, DI);
extern DI XORDI (DI, DI);
extern DI NEGDI (DI);
extern int NOTDI (DI);
extern DI INVDI (DI);
extern int EQDI (DI, DI);
extern int NEDI (DI, DI);
extern int LTDI (DI, DI);
extern int LEDI (DI, DI);
extern int GTDI (DI, DI);
extern int GEDI (DI, DI);
extern int LTUDI (UDI, UDI);
extern int LEUDI (UDI, UDI);
extern int GTUDI (UDI, UDI);
extern int GEUDI (UDI, UDI);
#else /* ! DI_FN_SUPPORT */
#define ADDDI(x, y) ((DI) ((UDI) (x) + (UDI) (y)))
#define SUBDI(x, y) ((DI) ((UDI) (x) - (UDI) (y)))
#define MULDI(x, y) ((DI) ((UDI) (x) * (UDI) (y)))
#define DIVDI(x, y) ((DI) (x) / (DI) (y))
#define UDIVDI(x, y) ((UDI) (x) / (UDI) (y))
#define MODDI(x, y) ((DI) (x) % (DI) (y))
#define UMODDI(x, y) ((UDI) (x) % (UDI) (y))
#define SRADI(x, y) ((DI) (x) >> (y))
#define SRLDI(x, y) ((UDI) (x) >> (y))
#define SLLDI(x, y) ((UDI) (x) << (y))
extern DI RORDI (DI, int);
extern DI ROLDI (DI, int);
#define ANDDI(x, y) ((x) & (y))
#define ORDI(x, y) ((x) | (y))
#define XORDI(x, y) ((x) ^ (y))
#define NEGDI(x) ((DI) (- (UDI) (x)))
#define NOTDI(x) (! (DI) (x))
#define INVDI(x) (~ (x))
#define ABSDI(x) ((DI) ((DI) (x) < 0 ? -(UDI) (x) : (UDI) (x)))
#define EQDI(x, y) ((DI) (x) == (DI) (y))
#define NEDI(x, y) ((DI) (x) != (DI) (y))
#define LTDI(x, y) ((DI) (x) < (DI) (y))
#define LEDI(x, y) ((DI) (x) <= (DI) (y))
#define GTDI(x, y) ((DI) (x) > (DI) (y))
#define GEDI(x, y) ((DI) (x) >= (DI) (y))
#define LTUDI(x, y) ((UDI) (x) < (UDI) (y))
#define LEUDI(x, y) ((UDI) (x) <= (UDI) (y))
#define GTUDI(x, y) ((UDI) (x) > (UDI) (y))
#define GEUDI(x, y) ((UDI) (x) >= (UDI) (y))
#endif /* DI_FN_SUPPORT */
#define EXTBIQI(x) ((QI) (BI) (x))
#define EXTBIHI(x) ((HI) (BI) (x))
#define EXTBISI(x) ((SI) (BI) (x))
#if defined (DI_FN_SUPPORT)
extern DI EXTBIDI (BI);
#else
#define EXTBIDI(x) ((DI) (BI) (x))
#endif
#define EXTQIHI(x) ((HI) (QI) (x))
#define EXTQISI(x) ((SI) (QI) (x))
#if defined (DI_FN_SUPPORT)
extern DI EXTQIDI (QI);
#else
#define EXTQIDI(x) ((DI) (QI) (x))
#endif
#define EXTHIHI(x) ((HI) (HI) (x))
#define EXTHISI(x) ((SI) (HI) (x))
#define EXTSISI(x) ((SI) (SI) (x))
#if defined (DI_FN_SUPPORT)
extern DI EXTHIDI (HI);
#else
#define EXTHIDI(x) ((DI) (HI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern DI EXTSIDI (SI);
#else
#define EXTSIDI(x) ((DI) (SI) (x))
#endif
#define ZEXTBIQI(x) ((QI) (BI) (x))
#define ZEXTBIHI(x) ((HI) (BI) (x))
#define ZEXTBISI(x) ((SI) (BI) (x))
#if defined (DI_FN_SUPPORT)
extern DI ZEXTBIDI (BI);
#else
#define ZEXTBIDI(x) ((DI) (BI) (x))
#endif
#define ZEXTQIHI(x) ((HI) (UQI) (x))
#define ZEXTQISI(x) ((SI) (UQI) (x))
#if defined (DI_FN_SUPPORT)
extern DI ZEXTQIDI (QI);
#else
#define ZEXTQIDI(x) ((DI) (UQI) (x))
#endif
#define ZEXTHISI(x) ((SI) (UHI) (x))
#define ZEXTHIHI(x) ((HI) (UHI) (x))
#define ZEXTSISI(x) ((SI) (USI) (x))
#if defined (DI_FN_SUPPORT)
extern DI ZEXTHIDI (HI);
#else
#define ZEXTHIDI(x) ((DI) (UHI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern DI ZEXTSIDI (SI);
#else
#define ZEXTSIDI(x) ((DI) (USI) (x))
#endif
#define TRUNCQIBI(x) ((BI) (QI) (x))
#define TRUNCHIBI(x) ((BI) (HI) (x))
#define TRUNCHIQI(x) ((QI) (HI) (x))
#define TRUNCSIBI(x) ((BI) (SI) (x))
#define TRUNCSIQI(x) ((QI) (SI) (x))
#define TRUNCSIHI(x) ((HI) (SI) (x))
#define TRUNCSISI(x) ((SI) (SI) (x))
#if defined (DI_FN_SUPPORT)
extern BI TRUNCDIBI (DI);
#else
#define TRUNCDIBI(x) ((BI) (DI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern QI TRUNCDIQI (DI);
#else
#define TRUNCDIQI(x) ((QI) (DI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern HI TRUNCDIHI (DI);
#else
#define TRUNCDIHI(x) ((HI) (DI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern SI TRUNCDISI (DI);
#else
#define TRUNCDISI(x) ((SI) (DI) (x))
#endif
/* Composing/decomposing the various types.
Word ordering is endian-independent. Words are specified most to least
significant and word number 0 is the most significant word.
??? May also wish an endian-dependent version. Later. */
#ifdef SEMOPS_DEFINE_INLINE
SEMOPS_INLINE SF
SUBWORDSISF (SI in)
{
union { SI in; SF out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE DF
SUBWORDDIDF (DI in)
{
union { DI in; DF out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE QI
SUBWORDSIQI (SI in, int byte)
{
assert (byte >= 0 && byte <= 3);
return (UQI) (in >> (8 * (3 - byte))) & 0xFF;
}
SEMOPS_INLINE UQI
SUBWORDSIUQI (SI in, int byte)
{
assert (byte >= 0 && byte <= 3);
return (UQI) (in >> (8 * (3 - byte))) & 0xFF;
}
SEMOPS_INLINE QI
SUBWORDDIQI (DI in, int byte)
{
assert (byte >= 0 && byte <= 7);
return (UQI) (in >> (8 * (7 - byte))) & 0xFF;
}
SEMOPS_INLINE HI
SUBWORDDIHI (DI in, int word)
{
assert (word >= 0 && word <= 3);
return (UHI) (in >> (16 * (3 - word))) & 0xFFFF;
}
SEMOPS_INLINE HI
SUBWORDSIHI (SI in, int word)
{
if (word == 0)
return (USI) in >> 16;
else
return in;
}
SEMOPS_INLINE SI
SUBWORDSFSI (SF in)
{
union { SF in; SI out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE DI
SUBWORDDFDI (DF in)
{
union { DF in; DI out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE UQI
SUBWORDDIUQI (DI in, int byte)
{
assert (byte >= 0 && byte <= 7);
return (UQI) (in >> (8 * (7 - byte)));
}
SEMOPS_INLINE SI
SUBWORDDISI (DI in, int word)
{
if (word == 0)
return (UDI) in >> 32;
else
return in;
}
SEMOPS_INLINE SI
SUBWORDDFSI (DF in, int word)
{
/* Note: typedef UDI DF; */
if (word == 0)
return (UDI) in >> 32;
else
return in;
}
SEMOPS_INLINE SI
SUBWORDXFSI (XF in, int word)
{
/* Note: typedef struct { SI parts[3]; } XF; */
union { XF in; SI out[3]; } x;
x.in = in;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
return x.out[word];
else
return x.out[2 - word];
}
SEMOPS_INLINE SI
SUBWORDTFSI (TF in, int word)
{
/* Note: typedef struct { SI parts[4]; } TF; */
union { TF in; SI out[4]; } x;
x.in = in;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
return x.out[word];
else
return x.out[3 - word];
}
SEMOPS_INLINE DI
JOINSIDI (SI x0, SI x1)
{
return MAKEDI (x0, x1);
}
SEMOPS_INLINE DF
JOINSIDF (SI x0, SI x1)
{
union { SI in[2]; DF out; } x;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
x.in[0] = x0, x.in[1] = x1;
else
x.in[1] = x0, x.in[0] = x1;
return x.out;
}
SEMOPS_INLINE XF
JOINSIXF (SI x0, SI x1, SI x2)
{
union { SI in[3]; XF out; } x;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
x.in[0] = x0, x.in[1] = x1, x.in[2] = x2;
else
x.in[2] = x0, x.in[1] = x1, x.in[0] = x2;
return x.out;
}
SEMOPS_INLINE TF
JOINSITF (SI x0, SI x1, SI x2, SI x3)
{
union { SI in[4]; TF out; } x;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
x.in[0] = x0, x.in[1] = x1, x.in[2] = x2, x.in[3] = x3;
else
x.in[3] = x0, x.in[2] = x1, x.in[1] = x2, x.in[0] = x3;
return x.out;
}
#else
QI SUBWORDSIQI (SI);
HI SUBWORDSIHI (HI);
SI SUBWORDSFSI (SF);
SF SUBWORDSISF (SI);
DI SUBWORDDFDI (DF);
DF SUBWORDDIDF (DI);
QI SUBWORDDIQI (DI, int);
HI SUBWORDDIHI (DI, int);
SI SUBWORDDISI (DI, int);
SI SUBWORDDFSI (DF, int);
SI SUBWORDXFSI (XF, int);
SI SUBWORDTFSI (TF, int);
UQI SUBWORDSIUQI (SI);
UQI SUBWORDDIUQI (DI);
DI JOINSIDI (SI, SI);
DF JOINSIDF (SI, SI);
XF JOINSIXF (SI, SI, SI);
TF JOINSITF (SI, SI, SI, SI);
#endif /* SUBWORD,JOIN */
/* Semantic support utilities. */
#ifdef SEMOPS_DEFINE_INLINE
SEMOPS_INLINE SI
ADDCSI (SI a, SI b, BI c)
{
SI res = ADDSI (a, ADDSI (b, c));
return res;
}
SEMOPS_INLINE BI
ADDCFSI (SI a, SI b, BI c)
{
SI tmp = ADDSI (a, ADDSI (b, c));
BI res = ((USI) tmp < (USI) a) || (c && tmp == a);
return res;
}
SEMOPS_INLINE BI
ADDOFSI (SI a, SI b, BI c)
{
SI tmp = ADDSI (a, ADDSI (b, c));
BI res = (((a < 0) == (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE SI
SUBCSI (SI a, SI b, BI c)
{
SI res = SUBSI (a, ADDSI (b, c));
return res;
}
SEMOPS_INLINE BI
SUBCFSI (SI a, SI b, BI c)
{
BI res = ((USI) a < (USI) b) || (c && a == b);
return res;
}
SEMOPS_INLINE BI
SUBOFSI (SI a, SI b, BI c)
{
SI tmp = SUBSI (a, ADDSI (b, c));
BI res = (((a < 0) != (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE HI
ADDCHI (HI a, HI b, BI c)
{
HI res = ADDHI (a, ADDHI (b, c));
return res;
}
SEMOPS_INLINE BI
ADDCFHI (HI a, HI b, BI c)
{
HI tmp = ADDHI (a, ADDHI (b, c));
BI res = ((UHI) tmp < (UHI) a) || (c && tmp == a);
return res;
}
SEMOPS_INLINE BI
ADDOFHI (HI a, HI b, BI c)
{
HI tmp = ADDHI (a, ADDHI (b, c));
BI res = (((a < 0) == (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE HI
SUBCHI (HI a, HI b, BI c)
{
HI res = SUBHI (a, ADDHI (b, c));
return res;
}
SEMOPS_INLINE BI
SUBCFHI (HI a, HI b, BI c)
{
BI res = ((UHI) a < (UHI) b) || (c && a == b);
return res;
}
SEMOPS_INLINE BI
SUBOFHI (HI a, HI b, BI c)
{
HI tmp = SUBHI (a, ADDHI (b, c));
BI res = (((a < 0) != (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE QI
ADDCQI (QI a, QI b, BI c)
{
QI res = ADDQI (a, ADDQI (b, c));
return res;
}
SEMOPS_INLINE BI
ADDCFQI (QI a, QI b, BI c)
{
QI tmp = ADDQI (a, ADDQI (b, c));
BI res = ((UQI) tmp < (UQI) a) || (c && tmp == a);
return res;
}
SEMOPS_INLINE BI
ADDOFQI (QI a, QI b, BI c)
{
QI tmp = ADDQI (a, ADDQI (b, c));
BI res = (((a < 0) == (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE QI
SUBCQI (QI a, QI b, BI c)
{
QI res = SUBQI (a, ADDQI (b, c));
return res;
}
SEMOPS_INLINE BI
SUBCFQI (QI a, QI b, BI c)
{
BI res = ((UQI) a < (UQI) b) || (c && a == b);
return res;
}
SEMOPS_INLINE BI
SUBOFQI (QI a, QI b, BI c)
{
QI tmp = SUBQI (a, ADDQI (b, c));
BI res = (((a < 0) != (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
#else
SI ADDCSI (SI, SI, BI);
UBI ADDCFSI (SI, SI, BI);
UBI ADDOFSI (SI, SI, BI);
SI SUBCSI (SI, SI, BI);
UBI SUBCFSI (SI, SI, BI);
UBI SUBOFSI (SI, SI, BI);
HI ADDCHI (HI, HI, BI);
UBI ADDCFHI (HI, HI, BI);
UBI ADDOFHI (HI, HI, BI);
HI SUBCHI (HI, HI, BI);
UBI SUBCFHI (HI, HI, BI);
UBI SUBOFHI (HI, HI, BI);
QI ADDCQI (QI, QI, BI);
UBI ADDCFQI (QI, QI, BI);
UBI ADDOFQI (QI, QI, BI);
QI SUBCQI (QI, QI, BI);
UBI SUBCFQI (QI, QI, BI);
UBI SUBOFQI (QI, QI, BI);
#endif
#endif /* CGEN_SEM_OPS_H */